

Characterization of *Alternaria* spp. associate to potato crops in Chile

Ivette Acuña Bravo, Camila Sandoval Soto and Sandra Mancilla Rosas

Instituto de Investigaciones Agropecuarias, INIA - Chile

Potato crop in Chile

© 2010 DMapas US Dept of State Geographer 71°10'05 84" O elev. 1301 m 35°42'43.47" S

Alt. oio 4730.62 km 🔘

Introduction: Early blight

Introduction

- Fungicides commonly used in Chile to control Early blight: difenoconazole, boscalid and strobilurin.
- Difenoconazole: prevents the development of the fungus by inhibiting cell membrane ergosterol biosynthesis.
- Boscalid: inhibiting mitochondrial respiration by binding succinate dehydrogenase (SDH).
- Strobilurin: (QoI, quinone outside inhibitor). They inhibit mitocondrial respiration in fungi by binding to the QoI site of the cytochrome b complex, blocking electron transfer and inhibiting ATP synthesis.
- Reduced early blight control was first observed in 2000 in the USA, where inadequate control by azoxystrobin was caused by a shift in fungicide sensitivity of *A. solani*. A few years later the same situation was observed in Germany.

Azoxistrobin sensitivity in A. solani – United States.

Fig. 1. Mean EC₅₀ values (effective fungicide concentration that inhibited spore germination by 50%) for *Alternaria solani* isolate groups obtained from the in vitro azoxystrobin assessment with mean separation based upon the least significant difference (LSD). Columns with the same letter are not significantly different (P = 0.05). Vertical bars indicate standard deviation for all tests performed on each isolate group.

Fig. 2. Mean EC₅₀ values (effective fungicide concentration that inhibited spore germination by 50%) for sensitive and reduced-sensitive *Alternaria solani* isolates obtained from the in vitro cross-sensitivity assessment of azoxystrobin, pyraclostrobin, and trifloxystrobin. Mean separation provided by Student's *t* tests (P = 0.05). Within fungicides, columns with the same letter are not significantly different. Vertical bars indicate standard deviation for all tests performed on each isolate group.

Table 3. Mean in vitro concentration that effectively reduces germination by 50% relative to the untreated control (EC₅₀ values; μ g/ml) of 25 sensitive and 26 reduced-sensitive *Alternaria solani* isolates for four respiratory inhibiting fungicides^a

	Sensitive		Reduced	l-sensitive		
Fungicide	EC ₅₀	SD	EC ₅₀	SD	LSD (<i>P</i> < 0.0001)	
Azoxystrobin	0.0324	0.0096	0.3788	0.1458	0.0288	
Famoxadone	0.0168	0.0113	0.0355	0.0169	0.0057	
Fenamidone	0.3003	0.0856	0.8439	0.6678	0.1889	
Boscalid	0.6878	0.6330	0.3175	0.1413	0.1786	
LSD ($P < 0.0001$)	0.1051		0.1151			

AZ registration 1998

^a Sensitivity or reduced-sensitivity to azoxystrobin (23); SD = standard deviation; LSD = least significant difference.

(Pasche *et al.,* 2004) (Pasche et al., 2005)

Azoxistrobin sensitivity in A. solani – Germany

Figure 2 In vitro azoxystrobin sensitivity assay of Alternaria solari wildtype and F129L isolates collected between 2006 and 2011. Columns represent mean EC₅₀ values, i.e. the effective fungicide concentration that inhibited spore germination by 50%. Bars represent standard deviations. Columns with the same letter are not significantly different (Tukey's b test, P = 0.05).

AZ registration: 2007

(Leiminger et al., 2014)

- > The main mechanism of resistance to QoI has been identified as mutations in the mitocondrial gene, cytb.
- > In A. solani, only the F129L amino acid substitution of phenylalanine (F) to leucine (L) at position 129 has been observed (Pasche et al., 2004).

Phenylalanine (TTC) Leucine (TTA, CTC, TTG)

- Sequence analysis revealed the occurrence of two structurally different cytb genes:
 - Genotype I: Intron present
 - Genotype II: Intron absence

(Leiminger *et al.*, 2014).

Table 3 Occurrence of genotype I and II among German Alternaria solani isolates between 2005 and 2011 and their association with F129L mutation

		Wildtype		F129L		
Year	Total number of isolates	Genotype I	Genotype II	Genotype I	Genotype II	
2005	6	6				
2006	24	23	1			
2007	20	20				
2008	5	5				
2009	39	37			2	
2010	10	8			2	
2011	99	23	1		70	
Total	203	127	2		74	

Objetives

- > To identify and characterize Alternaria spp associated to potato crop in Chile.
- To assess the *in vitro* sensitivity of *A. solani* to QoI fungicides and its relation with F129L substitution.

Survey and morphological characterization

Field collection of potato leaves with early blight symptoms from commercial crops in the southern Chile

Single - conidial isolates on PCA

Colony morphology, sporulation patterns and conidial size using taxonomic keys

To confirm identity of the isolates molecular tools were used

Single conidia isolate

DNA extraction

PCR with primers ITS5-ITS4 (White *et al.*, 1990). Fragment were excised from the gel

In vitro fungicide sensitivity assays of A. solani

a. Sensitivity to azoxystrobin, pyraclostrobin and boscalid: spore germination

 $\overline{}$

Conidia were washed Conidial suspension was added to water agar amended with each fungicide 0 - 0.01 - 0.1 - 1 - 10 ppm

Conidial germination was determined after 16 hrs of incubation under light.

b. Sensitivity to boscalid and difenoconazole: micelial growth

Culture on PCA

Mycelial growth assessed after 10 days of incubation on 10% PDA amended media with 0 - 0.01 - 0.1 - 1 - 10 ppm of the fungicide

PCR amplification and sequencing of a cytochrome b fragment for the detection of the F129L mutation

INIA

DNA extraction

PCR using specific primers for genotype I and genotype II described by Pasche *et al.*, 2005 and Leiminger *et al.*, 2014.

Sequencing fragment PCR and bioinformatic analysis

Alternaria spp. identification

A. solani

Large spore

A. alternata Image: Constraint of the second se

A. tenuissima

A. infectoria

Small spore

0.01

Phylogenetic tree based on alignment of Alternaria species including ITS sequencing data. The tree was carried out using MEGA software.

In vitro fungicide sensitivity assays of A. solani

Mean EC₅₀ values for *A. solani* isolates obtained from the *in vitro* sensitivity assessment of azoxystrobin, boscalid, difenoconazole and pyraclostrobin.

Ocurrence of genotype I and II of *A. solani* isolates collected in 2013 and 2016 and the presence of F129L mutation

_		Isolates		F129L	
Sample ID	Year	Genotype I	Genotype II	Genotype I	Genotype II
13	2013		Х		
20	2013		X		
21	2013		X		
22	2013		X		
34	2013		X		
40	2013	X			
42	2013	X			
45	2013		X		
49	2013		X		
53	2013		Х		
1	2016	X			
2	2016	X			
3	2016	X			
4	2016		X		
5	2016		Х		
6	2016		X		
7	2016		X		
8	2016		X		
10	2016		X		
11	2016		X		

GTTAGCO GTTAGCO GTTATCT GTTATCT GTTATCT	GAAATTTAG GAAATTTAG ITTATCTTAA ITTATCTTAA ITTATCTTAA	ACAGC ACAGC TGATGGCTACAGC TGATGGCTACAGC	ITIC(IGGGTTA- ITIC(IGGGTTA- ITIC(IGGGTTAC ITIC(IGGGTTAC	TGTTCTTCC TGTTCTTCC CAACATAGCCCA CAACATAGCCCA	TTATGGGCAA TTATGGGCAA AAATGGTTTG	A T G T C T T T A A T G T C T T T A A T A T A A G T A
G T T A G C G G T T A T C T G T T A T C T G T T A T C T G T T A T C T	GAAATTTAG TTATCTTAA TTATCTTAA TTATCTTAA	ACAGC IGAIGGCIACAGC IGAIGGCIACAGC	ITTC(IGGGTIA- ITTC(IGGGTIAC ITTC(IGGGTIAC	IGIICIICC Caacatagccca Caacatagccca	TTATGGGCAA AAATGGTTTG	A I G I C I I I A A I A I A A G I A
G T T A T C T G T T A T C T G T T A T C T G T T A T C T	ITTATCTTAA ITTATCTTAA ITTATCTTAA	TGATGGCTACAGC TGATGGCTACAGC	ITTC(TGGGTTAC	CAACATAGCCCA CAACATAGCCCA	AAATGGTTTG	A T A T A A <mark>g</mark> T A
GTTATCT GTTAICT GTTATCT	ITT <mark>ATCTTAA</mark> ITT <mark>ATC</mark> TTAA	TGATGGCTACAGC	ITTC TGGGTTAC	CAACATAGCCCA		
G T T A T C I G T T A T C I	ITT <mark>ATC</mark> TT <mark>A</mark> A	TGATCCCTACACC			AAAIGGIIIG	ATATAAGTA
g t t <mark>a</mark> t <mark>c</mark> t		TOWIGGOINCHOC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	<mark>A A A T G G T T T G</mark>	ATATAAGTA
	TT <mark>ATC</mark> TTAA	TGATGGCTACAGC	ITTC: TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A G T A
GTTATCI	I T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC: TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A G T A
g t t <mark>a</mark> t <mark>c</mark> t	I T T <mark>a t c</mark> t t <mark>a a</mark>	TGATGGCTACAGC	TTTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	<mark>A A A T G G T T T G</mark>	ATATAAGTA
g t t <mark>a</mark> t <mark>c</mark> t	I T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC: TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A G T A
g t t <mark>a</mark> t <mark>c</mark> t	I T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC: TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A G T A
g t t <mark>a g c</mark> g	G A A A T T T A G	ACAGC	ITTC TGGGTTA-	TGTTCTTCC	TIATGGGCAA	A I G I C I I I A
g t t <mark>a g c</mark> g	G A A A T T T A G	ACAGC	ITTC TGGGTTA-	TGTTCTTCC	TIATGGGCAA	A I G I C I I I A
g t t <mark>a g c</mark> g	G A A A T T T A G	ACAGC	ITTC TGGGTTA-	TGTTCTTCC	TIATGGGCAA	A T G T C T T T A
g t t <mark>a</mark> t <mark>c</mark> t	C T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A G T A
g t t <mark>a</mark> t <mark>c</mark> t	C T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A <mark>G</mark> T A
g t t <mark>a</mark> t <mark>c</mark> t	C T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A <mark>G</mark> T A
g t t <mark>a</mark> t <mark>c</mark> t	C T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	A A A T G G T T T G	A T A T A A G T A
g t t <mark>a</mark> t <mark>c</mark> t	I T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	AAATGGTTTG	ATATAAGTA
	I T T <mark>A T C</mark> T T <mark>A </mark> A	TGATGGCTACAGC	ITTC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	<mark>A A A T G G T T T G</mark>	ATATAAGTA
G T T <mark>A</mark> T <mark>C</mark> I	I T T <mark>a t c</mark> t t <mark>a a</mark>	TGATGGCTACAGC	TTCC TGGGTTAC	CAACA <mark>T</mark> A <mark>G</mark> CCCA	<mark>A A A T G G T T T G</mark>	ATATAAGTA
G T T A T C I G T T A T C I					AAATGGTTTC	ATATAAGTA
÷	TTATCI TTATCI	TTATCTITATCTTAA TTATCTITATCTTAA	STTATCTTTATCTTAATGATGGCTACAGC STTATCTTTATCTTAATGATGGCTACAGC	STTATCTTTATCTTAATGATGGCTACAGC ITTC(IGGGTTAC STTATCTTTATCTTAATGATGGCTACAGC ITTC(IGGGTTAC	TTATCTITATCTIAAIGAIGGCIACAGC ITIC(IGGGIIACCAACAIAGCCCA TTAICIIIAICTIAAIGAIGGCIACAGC IIIC(IGGGIIACCAACAIAGCCCA TTAICIIIAICTIAAIGAIGGCIACAGC ICIC(IGGGIIACCAACAIAGCCCA	TTATCTTTATCTTAATGATGGCTACAGC ITTC TGGGTTACCAACATAGCCCAAAATGGTTTG TTATCTTTATCTTAATGATGGCTACAGC ITTC TGGGTTACCAACATAGCCCAAAATGGTTTG TTATCTTTATCTTAATGATGGCTACAGC CTC TGGGTTACCAACATAGCCCAAAATGGTTTG

F129L TTC CTC, TTA, TTG

NDSU-F129L: US reference strain (Genotype II F129L)

The F129L mutation was not detected in this population

Conclusions

- Five Alternaria spp were associated with early blight symptoms in the potato crop in Chile (*A. alternata, A. arborescens, A. tenuissima, A. infectoria* and *A. solani*).
- All isolates of *A. solani* were highly sensitive to azoxystrobin, pyraclostrobin, difenoconazole and boscalid *in vitro* studies.
- F129L mutation was not detected in this population.
- This information is preliminary and could constitutes the "baseline" for monitoring changes in population sensitivity to QoI fungicides.

Acknowledgements

- INIA Phtytopathology Lab– Osorno, Chile
- Department of Plant Pathology– NDSU, USA.

This research has been financed by:

- FIA Fundación para la innovación agraria.
- Chile Papa Consortium

