

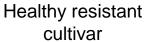
The potato microbiome and its potential impact on late blight resistance

Mout De Vrieze

Agroscope, Institute for Plant Production Sciences, Wädenswil & Nyon

08.08.2016


O

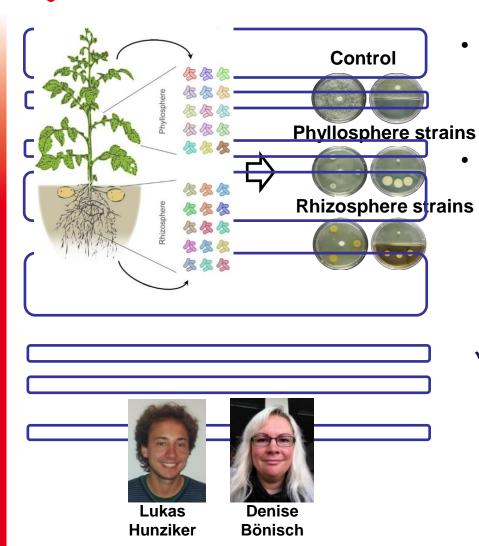

Exploring the microbiome

- The microbiome : not only in the soil and rhizosphere
- ➤ The phyllosphere is a harsh environment but still 10⁷ microbes per cm² of leaf
- ➤ Impact on their host

- Diversity of microorganisms...
- ✓ Selected by the plant
- Potentially modified upon infection with a pathogen
- ✓ Potentially beneficial and/or protective...

Symptomatic moderately susceptible cultivar

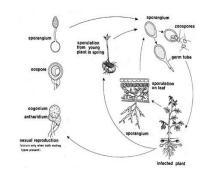
...against late blight?



Can we find potential biocontrol strains in the potato's microbiome?

O

Isolation of microbiome inhabitants


	Strair	Affiliation	P. i	nf	H. sol	R. so	<u>l</u>	F. oxy		D. dian
	Over	all moss	t active	S	träir	າຣ Bໍ	eld	<u>ာရီ</u> ရ	t	O 35
		energinalis Energinalis					_	_		
		bacter							-,	73 51
	R73	Bacillus sp.	Q. 1 Q. 1 1 7		27	94		84		88
;	R54	Bacillus sp.	13		18	98		83		87
	S50	P. moraviensis	10)	66	76		91		58
ſ	-Rseu	domon	as acce	DU	nts i	tOfot	he	a mo	\mathcal{O}	St ₈₁
L	R01	P. moraviensis	30		66	95		98		33
	active	e <i>i</i> strain:	S 25	;	38	91		93		81
	S35	P. marginalis	27	,	67	81		80		73
	S06	P. frederiksberg	gensis 10	1	21	82		99		66
	63 4	P. frederiksber	zang is D 92		22	. 95		85.	:.	75
	7 5	elected	15 PSE	u	IJQĮŢĬ	ona	S	Sîta	llľ	ารู๑
	with N	/arying	anti- <i>Pţ</i>	yı	toph	ıt <mark>h</mark> ğ.	ra	ą¢t	i۷	∕itÿ̈́
	R02	P. veronii	56	,	60	88		91		92
	S46	Curtobacteriun	isp. 35	;	78	95		84		97
							_			

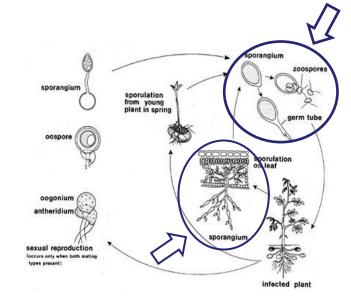
✓ Are there potential biocontrol agents among them?

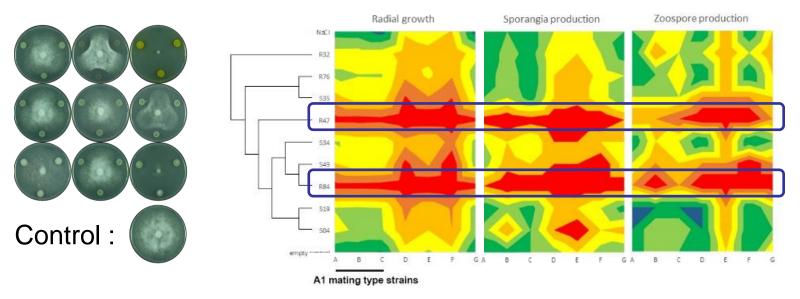
S04	P. frederiksbergensis	97	22	97	98	91
R61	Arthrobacter sp.	8	113	115	99	92
S25	Curtobacterium sp.	77	71	90	98	93
R60	Arthrobacter sp.	15	132	112	87	93
R75	Flavobacterium sp.	82	95	98	86	88
R42	Microbacterium sp.	14	153	107	92	89
R96	Flavobacterium sp.	111	96	99	93	80

Exploring the bacteria's potential

 What stage of the Phytophthora lifecycle do the bacteria affect?

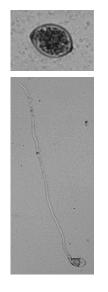
• How are these life stages affected?

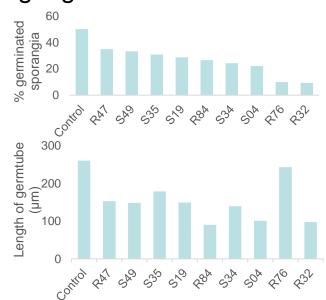

- Is the anti-Phytophthora activity maintained on leaf tissue?
- Are the strains capable of establishing themselves on potato plants?



→ Bio assays

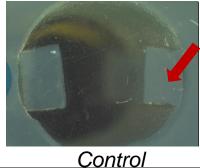
Mode of action

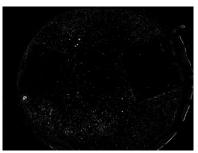

- Effects of the bacteria on different stages of the *P. infestans* life cycle :
- ✓ Mycelial growth
- ✓ Sporangia production
- ✓ Zoospore production



Mode of action

Sporangia germination

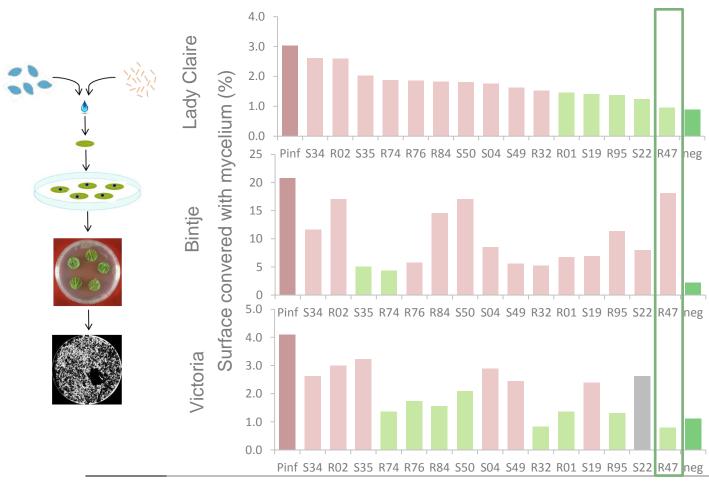



- Sporangia viability
- → Propidium iodide staining

Alive Dead 52 % 48 % 98 % 2 % 92 % 8 %

Zoospore motility and chemotaxis

Aspartic acid



R47 supernatant

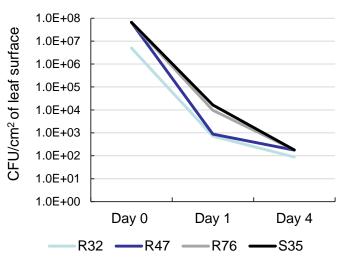
Q

Is the anti-*Phytophthora* activity maintained on leaf tissue?

In vivo test on leaf discs: coinoculation on leaf tissue

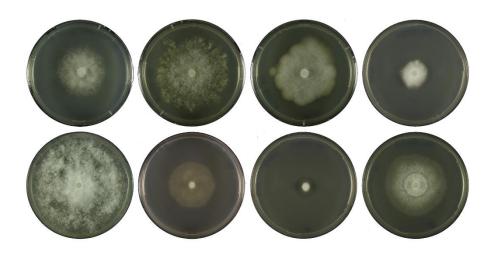
Q

Can the bacteria colonise potato plants?


- Tuber inoculation
- ✓ Bacterial suspensions (OD=1)
- ✓ Stem cuts

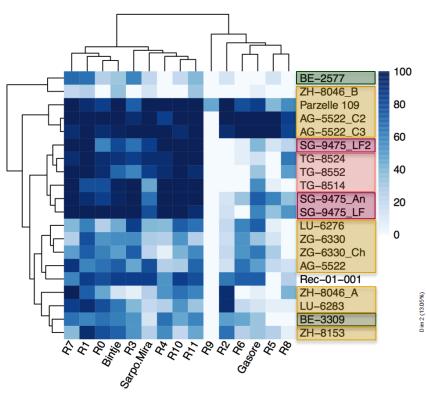
	Not sterilised	Surface sterilised
R32	• •	•••
R47	•••	••
R76	••	••
R84	•	-
S04	•	••
S19	••	••
S34	••	•••
S35	••	•••
S49	••	•••

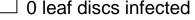
- retrieved after 3 weeks
- retrieved after 4 weeks
- ••• retrieved after 5 weeks

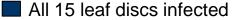


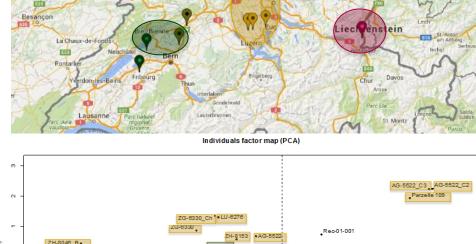
- Leaf application
- ✓ Bacterial suspensions (OD=1)
- ✓ Leaf discs
- ✓ CFU count

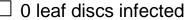
Do different P. infestans strains differing in virulence show varying susceptibility to biocontrol bacteria?

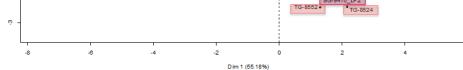


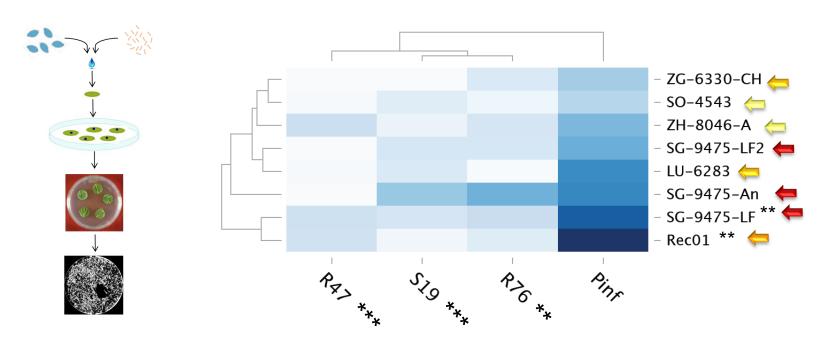

Monitoring of *P. infestans* in Switzerland – Characterisation of virulence




→ Leaf disc assay


Ramona Gloor





BE-2577 • ZH-8046_A •

Susceptibility of P. infestans strains varying in virulence towards our antagonists

Leaf disc assay with subset of P.infestans strains

- > All *P.infestans* strains are inhibited
- ➤ The response varies from bacterial strain to bacterial strain regardless of the apparent virulence of the *P. infestans* strains

O

Outlook - Mechanisms?

Adveitien Rabaktynar

- ✓ CLSA and GC-MS to identify volatile organic compounds (VOCs)
- Diffusible compounds
 - \rightarrow TLC
- Genome mining (9 strains)
 - → Looking for genes
- Comparative genomics
 comparison of genomes of strains
 showing varying anti-Phytophthora activity

HCN R47 C≡N

1Ptrefeccines^{H₃} c N

MMTS

HPR

DMDS

Byrrenitrin

Acknowledgements

Institute for Plant Production Sciences, Nyon & Wädenswil

Dr. Laure Weisskopf Ramona Gloor Josep Massana Codina

Dr. Katia Gindro and Mycology Group

Dr. Jürg Frey

Adithi Ravikumar Varadarajan

Dr. Christian Ahrens

Dr. Aurélie Gfeller

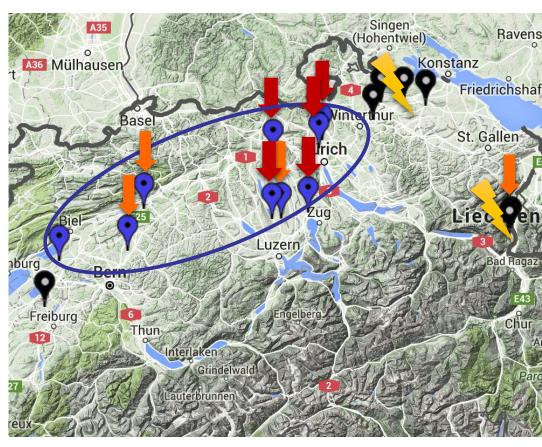
University of Zürich

Dr. Aurélien Bailly Prof. Leo Eberl

Institute for Sustainibility Sciences, Reckenholz

Anouk Guyer Tomke Musa Alessia Gandolfi

Thank you for your attention



Agroscope good food, healthy environment

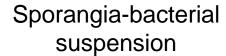
"Monitoring of Phytophthora infestans population diversity in Switzerland"

In 2015:

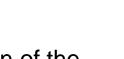
- ✓ 22 isolates were successfully retrieved
- ✓ 3 A1, 18 A2
- ✓ Majority of EU_13_A2
- ✓ Increased resistance against Mefenoxam in the EU_13_A2 isolates



EU_13_A2


miscellaneous

Antagonistic leaf disc assay: method



7 days

Inoculation of the leaf disc (Ø 2 cm)

De Vrieze

Evaluation of % the surface covered with mycelium...

...with automated picture analysis