

Transcriptional regulatory network in potato – potato virus Y interaction signaling

Tjaša Lukan

National Institute of Biology, Ljubljana, Slovenia Department of Biotechnology and Systems biology

August 2016

Potato virus Y

Group	IV: (+) sense RNA viruses
Family	Potyviridae
Genus	Potyvirus
Species	Potato virus Y (PVY)

The level of crop damage is determined by:

- the strain of PVY
- the host tolerance

Potato tuber necrotic ringspot disease

Symptoms after PVY infection

	Host										
	Suscep	tible	Resistant								
			HYPERSENSITIVE	EXTREME							
	SENSITIVE	TOLERANT	RESPONSE	RESISTANCE							
CULTIVAR	lgor	Desiree	Rywal	PW363							
	necrosis or other	mild or no									
SYMPTOMS	symptoms	symptoms	necrotic lesions	no symptoms							

Plant immune signaling

Aim

Studies of potato-PVY interaction \rightarrow different genes have different spatiotemporal gene expression behaviour

Promoters of genes from signaling pathways \rightarrow sensors

Spatiotemporal responses of

SA, JA and ET signaling pathways in potato after PVY infection

Sensors of plant defense after pathogen attack

Functional analysis of

promoters from six genes involved in plant signaling pathways

chr09

identification of genes in potato genome (Phureja - diploid monozygot line (DM))

identification of promoter sequence (Potato genome browser)

primer design

Nested PCR

(touchdown)

cloning into pJET

gDNA isolation

(PW, Rywal, Desiree)

Bioinformatic analysis of TGA promoter sequences

		1	2	3	4	5	6	7	8	9	10	
TGA_PGSC	1		165	165	165	0	0	0	0	1	17	
TGA_PW_1	2	89,73		0	0	165	165	165	165	166	168	
TGA_PW_2	3	89,73	100,00		0	165	165	165	165	166	168	S
TGA_PW_3	4	89,73	100,00	100,00		165	165	165	165	166	168	Ö
TGA_Rywal_1	5	100,00	89,73	89,73	89,73		0	0	0	1	17	Lei
TGA_Rywal_2	6	100,00	89,73	89,73	89,73	100,00		0	0	1	17	ffe
TGA_Rywal_3	7	100,00	89,73	89,73	89,73	100,00	100,00		0	1	17	Di
TGA_Desiree_1	8	100,00	89,73	89,73	89,73	100,00	100,00	100,00		1	17	
TGA_Desiree_2	9	99,93	89,67	89,67	89,67	99,93	99,93	99,93	99,93		18	
TGA_Desiree_3	10	98,88	89,53	89,53	89,53	98,88	98,88	98,88	98,88	98,81		

Percent identity

	301	800	310	320	330	340	350	360	370	380	390		400		410
TGA_PGSC	300	CTAGTTT	A <mark>GTAATCT</mark>	I <mark>G</mark> CCTAGTAAA	ATACTT <mark>G</mark> AA-						CTA <mark>T</mark> TT·	<mark>A</mark>	A <mark>GAT</mark> AA	AA <mark>G</mark> AT	
TGA_P1	280	CTAATTT1	I <mark>GTAATCT1</mark>	r <mark>acctagtaaa</mark>	ATACTTTAA	ACAAGTTCCAAA	CATATCCATA	CGCGACTTTC	ATCTTATCA	АССАААТСААА	CTAATT(CCTCCA	T <mark>GAT</mark> G <mark>A</mark>	AC <mark>AT</mark>	CGCTGAGTA
TGA_P2	280	CTAATTT	T <mark>GTAATCT1</mark>	r <mark>acctagtaaa</mark>	ATACTTTAA	ACAAGTTCCAAA	CATATCCATA	CGCGACTTTC	ATCTTATCA	АССАААТСААА	CTAATT(CCTCC <mark>A</mark>	T <mark>GAT</mark> G <mark>A</mark>	AC AT	CGCTGAGTA
IGA P3	280	CTAATTT	г <mark>стаатст</mark>	г <mark>асстастаа</mark> а	TACTTTAAZ	СААСТТССААА	ататссата	CGCGACTTTC	атсттатса	оссаватсава	<mark>ста</mark> атт(CTCC <mark>A</mark>	T <mark>GATGA</mark> Z	ACAT	CGCTGAGTA
TGAR1	300	CTAGTTT	AGTAATCT:	r <mark>g</mark> cctagtaaa	ATACTT <mark>G</mark> AA-						CTA <mark>T</mark> TT·	<mark>A</mark>	AGAT <mark>A</mark> AA	A <mark>g</mark> at	
TGA_R2	300	CTAGTTT	AGTAATCT1	r <mark>g</mark> cctagtaaa	ATACTT <mark>G</mark> AA-						CTA <mark>T</mark> TT·	<mark>A</mark>	A <mark>GAT</mark> AA	AA <mark>G</mark> AT	
TGA_R3	300	CTAGTTT2	AGTAATCT:	r <mark>g</mark> cctagtaaa	ATACTT <mark>G</mark> AA-						CTATTT.	<mark>A</mark>	AGATAA	A <mark>G</mark> AT	
TGA_D1	300	CTAGTTT	AGTAATCT:	I <mark>G</mark> CCTAGTAAA	ATACTT <mark>G</mark> AA-						CTA <mark>T</mark> TT	<mark>A</mark>	A <mark>GAT</mark> AA	A <mark>G</mark> AT	
TGA_D2	300	CTAGTTT	AGTAATCT1	I <mark>G</mark> CCTAGTAAA	ATACTT <mark>G</mark> AA-						CTA <mark>T</mark> TT-	<mark>A</mark>	A <mark>GAT</mark> AA	AA <mark>G</mark> AT	
TGA_D3	300	CTA <mark>G</mark> TTT <mark>A</mark>	AGTAATCT:	Г <mark>С</mark> ССТАБТААА	ATACTT <mark>G</mark> AA-						CTA <mark>T</mark> TT-	<mark>A</mark>	AGAT <mark>A</mark> AA	A <mark>G</mark> AT	

Bioinformatic analysis of PR1b promoter sequences

		1	2	3	4	5	6	7	8	9	10
PR1b_PGSC	1		81	76	74	277	277	83	74	73	74
PR1b_PW_1	2	95,02		9	7	297	298	110	9	8	7
PR1b_PW_2	3	95,32	99,44		2	292	293	105	4	3	2
PR1b_PW_3	4	95,45	99,57	99,88		290	291	103	2	1	0
PR1b_Rywal_1	5	83,52	82,36	82,66	82,78		31	284	290	289	290
PR1b_Rywal_2	6	83,48	82,26	82,56	82,68	97,95		281	291	290	291
PR1b_Rywal_3	7	94,91	93,28	93,58	93,70	83,16	83,29		103	102	103
PR1b_Desiree_1	8	95,45	99,44	99,75	99,88	82,78	82,68	93,70		3	2
PR1b_Desiree_2	9	95,51	99,51	99,81	99,94	82,84	82,74	93,77	99,81		1
PR1b_Desiree_3	10	95,45	99,57	99,88	100,00	82,78	82,68	93,70	99,88	99,94	

Differences

Percent identity

	32	40	50	60	70	80	90	100	110	120	130	140	150	160	170
PR1b_PGSC	31	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	T <mark>AGTG<mark>G</mark>CA</mark>	.GAGCCATGATTTI	T <mark>AATAAG</mark>	- <mark>GGGTTCAAA</mark> AT	CC <mark>GAAG</mark> GAC	G <mark>TAAA<mark>C</mark>ATAT<mark>G</mark></mark>	A <mark>ACTAG</mark> TCGA	AGGGGGGG-	TTCGACATCT	A <mark>TTAT</mark> AT <mark>A</mark> CATC	<mark>T</mark> AA <mark>A</mark> AAATAAT
PR1b_P1	31	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	C <mark>AGTG</mark> CA	.GA <mark>A</mark> CCATGATTTI	C AATAAG	<mark>A</mark> GGGTTCAAA <mark>T</mark> T	CTGAAG <mark>G</mark> AT	I <mark>T</mark> AAA <mark>C</mark> ATAC <mark>G</mark>	A <mark>AC</mark> TAGTCGA	AGGGGG	TTCGACATCT	A <mark>TTAT</mark> AT <mark>A</mark> CATC	<mark>т</mark> аа <mark>а</mark> ааатаат
PR1b_P2	30	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	C <mark>AGTG</mark> CA	.GA <mark>A</mark> CCATGATTTI	C <mark>AATAAG</mark>	A <mark>GGGTTCAAA</mark> T	CTGAAG <mark>G</mark> AT	I <mark>T</mark> AAA <mark>C</mark> ATAC <mark>G</mark>	A <mark>AC</mark> TAGTCGA	AGGGGG	TTCGACATCT	A <mark>TTAT</mark> AT <mark>A</mark> CATC	<mark>т</mark> аа <mark>а</mark> ааатаат
DD16 D2	21	TACCTCATCCAACA	CONSTROOM	COLCCCTON	CACTO CA	CARCONTONTTT	• <mark>•</mark> ••••	A COOTTONN T	e <mark>rezze</mark> zz	T <mark>T</mark> AAA <mark>C</mark> ATAO <mark>C</mark>	A ACTACTCC2	200000	TTOCLOATOT	TTATATA	TAA <mark>A</mark> AAATAAT
PR1b_R1	31	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	CAGTGACA	.ga <mark>a</mark> ccatgattti	<mark>с</mark> аатаас	g <mark>gggttcaaa</mark> at	CGTG	G <mark>TCCCC</mark> <mark>CG</mark>	C <mark>AC</mark> C <mark>AG</mark>			- <mark>TTAT</mark> TA <mark>A</mark> TG <mark>TC</mark>	TCG <mark>A</mark> G
PR1b_R2	31	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	C <mark>AGTG</mark> ACA	.GA <mark>A</mark> CCATGATTTI	C <mark>AATAAG</mark>	G <mark>GGGTTCAAA</mark> A <mark>T</mark>	C <mark>g</mark> tg	G <mark>T</mark> CCC <mark>C</mark> <mark>CG</mark>	C <mark>AC</mark> C <mark>AG</mark>			- <mark>TTAT</mark> TA <mark>A</mark> TG <mark>TC</mark>	TCG <mark>A</mark> G
PR1b_R3	31	<mark>TAC</mark> ATGATGGAACA	GGAATTCCAC	GCAGCGGTGA	T <mark>agtg</mark> ca	.GA <mark>A</mark> CCATGATTTI	C <mark>AATAAG</mark>	G <mark>gggttcaaa</mark> at	CCGAAG <mark>G</mark> AT	I <mark>TAAAC</mark> ATAC <mark>G</mark>	A <mark>ACT</mark> AGCCGA	AGGGGGGGGGG	TTCGACATCT	a <mark>ttat</mark> ata <mark>ca</mark> tc	<mark>T</mark> AA <mark>A</mark> AAATAA1
THID_DI	51	TAC <mark>G</mark> IGAIGGAACA	GGAATTCCAC	GCAGCGGIGAG	CAGIG <mark>G</mark> CA	GA <mark>A</mark> CCAIGAIIII	CAATAAG	AGGGIICAAA <mark>I</mark> I	CIGAAG <mark>G</mark> AI	I <mark>TAAAC</mark> ATAC <mark>G</mark>	AACTAGICGA	AGGGGG	TICGACATCI.	ATTATATACATC	<mark>таад</mark> ааатааТ
PR1b_D2	31	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	C <mark>AGTG</mark> CA	.GA <mark>A</mark> CCATGATTTI	C <mark>AATAAG</mark>	<mark>a</mark> gggttcaaa <mark>t</mark> t	CTGAAG <mark>G</mark> AT	I <mark>T</mark> AAA <mark>C</mark> ATAC <mark>G</mark>	A <mark>AC</mark> TAGTCGA	AGGGGG	TTCGACATCT	A <mark>TTAT</mark> AT <mark>A</mark> CATC	<mark>т</mark> аа <mark>а</mark> ааатаат
PR1b_D3	31	TAC <mark>G</mark> TGATGGAACA	GGAATTCCAC	GCAGCGGTGA	C <mark>AGTG</mark> CA	.GA <mark>А</mark> ССАТGАТТТІ	C AATAAG	<mark>a</mark> gggttcaaa <mark>t</mark> t	CTGAAG <mark>G</mark> AT	I <mark>T</mark> AAA <mark>C</mark> ATAC <mark>G</mark>	A <mark>AC</mark> TAGTCGA	AGGGGG	TTCGACATCT	A <mark>TTAT</mark> AT <mark>A</mark> CATC	<mark>т</mark> аа <mark>а</mark> ааатаат

PR1b promoter specificities: **TGA1a** from SA-signaling pathway

Transcription factor	Regulatory element	PR1b_P1	PR1b_P2	PR1b_P3	PR1b_R1	PR1b_R2	PR1b_R3	PR1b_D1	PR1b_D2	PR1b_D3
BPC1	AGAAAg	6 (+)								
NAC6	TTACGt	30 (-)	29 (-)	30 (-)	30 (-)	30 (-)		30 (-)	30 (-)	30 (-)
OCSBF-1	ACGTG	32 (-)	31 (-)	32 (-)	32 (-)	32 (-)		32 (-)	32 (-)	32 (-)
C1	cgAACTAgccg						123 (+)			
ARR10	AGATCcg				137 (+)	137 (+)				
HSFA1E	cCGTCG	202 (+)	201 (+)	202 (+)			204 (+)	202 (+)	202 (+)	202 (+)
HSFA2	tTTTGG	214 (-)	213 (-)	214 (-)				214 (-)	214 (-)	214 (-)
At2g41690	gTTCGG						216 (-)			
TGA1a	gcgGTGACctatttgaaaactt					ſ	255 (+)			
AZF3	aaattATACTt	282 (-)	281 (-)	282 (-)			285 (-)	282 (-)	282 (-)	282 (-)
TGA1A	tTCGTCa	320 (+)	319 (+)	320 (+)			323 (+)	320 (+)	320 (+)	320 (+)
HSFA4A	aCTATT	406 (+)	405 (+)	406 (+)	296 (+)	296 (+)	409 (+)	406 (+)	406 (+)	406 (+)
RIN	ccTTAAAaacg	434 (-)	433 (-)	434 (-)	324 (-)	324 (-)	437 (-)	434 (-)	434 (-)	434 (-)
GT-1	aGTTAAtatcta					381 (-)	494 (-)			
BPC1	AGAAAg	504 (+)	503 (+)	504 (+)	394 (+)	394 (+)	507 (+)	504 (+)	504 (+)	504 (+)
WRKY	TGACTaactaa				477 (-)					
At3g51080	ttTTTCC					409 (-)	522 (-)			
CBNAC	tTGCTT	577 (+)	576 (+)	577 (+)		462 (+)	575 (+)	577 (+)	577 (+)	577 (+)
Myb-15	ТААСАа	591 (+)	590 (+)	591 (+)		476 (+)	589 (+)	591 (+)	591 (+)	591 (+)
MADS-A	aatcctAAAATgaaaa				636 (+)	631 (+)	744 (+)			
ERF13	aggGCGGCtc	643 (-)	642 (-)	643 (-)		528 (-)	641 (-)	643 (-)	643 (-)	643 (-)
DRF1.3	aggGCGGCtc	643 (-)	642 (-)	643 (-)		528 (-)	641 (-)	643 (-)	643 (-)	643 (-)
ESR1	agggCGGCTc	643 (-)	642 (-)	643 (-)		528 (-)	641 (-)	643 (-)	643 (-)	643 (-)
At3g63350	gGGCGG	644 (-)	643 (-)	644 (-)		529 (-)	642 (-)	644 (-)	644 (-)	644 (-)
ERF1	GGCGGctc	645 (+)	644 (+)	645 (+)		530 (+)	643 (+)	645 (+)	645 (+)	645 (+)
At3g51080	ttTTTCC	679 (-)	678 (-)	679 (-)		562 (-)	675 (-)	679 (-)	679 (-)	679 (-)
ASR-1	ACCCA	840 (+)	839 (+)	840 (+)	728 (+)	723 (+)		840 (+)	840 (+)	840 (+)
PEND	tatAAGAAtt	853 (-)	852 (-)	853 (-)				853 (-)	853 (-)	853 (-)
HSFA2	tTTTGG	887 (-)	886 (-)	887 (-)	776 (-)	771 (-)	887 (-)	887 (-)	887 (-)	887 (-)
CBNAC	tTGCTT						914 (+)			
OCSBF-1	CACGT	931 (+)	930 (+)	931 (+)	820 (+)	815 (+)		931 (+)	931 (+)	931 (+)
At3g51080	GGAAAaa	980 (+)	979 (+)	980 (+)	870 (+)	865 (+)		980 (+)	980 (+)	980 (+)
TGA1A	tACATCa	1052 (+)	1051 (+)	1052 (+)				1052 (+)	1052 (+)	1052 (+)
ASR-1	ACCCA	1104 (+)	1103 (+)	1104 (+)	994 (+)	990 (+)	1106 (+)	1104 (+)	1104 (+)	1104 (+)
HSFA2	ССАААа	1106 (+)	1105 (+)	1106 (+)	996 (+)	992 (+)	1108 (+)	1106 (+)	1106 (+)	1106 (+)
HSFA4A	aCTATT				1085 (+)	1076 (+)	1199 (+)			
HBP-1a	cacaCGACAt	1225 (+)	1224 (+)	1225 (+)	1118 (+)	1109 (+)	1232 (+)	1225 (+)	1225 (+)	1225 (+)
AGL20	tttaaATTTAac	1294 (-)	1293 (-)	1294 (-)	1184 (-)	1175 (-)	1298 (-)	1294 (-)	1294 (-)	1294 (-)
Myb-15	ТААСАа	1302 (+)	1301 (+)	1302 (+)	1192 (+)	1183 (+)	1306 (+)	1302 (+)	1302 (+)	1302 (+)
HSFAZ	ССАААа				1294 (+)	1285 (+)	1376 (+)	I		
HSFAZ	ССАААа	4405 ()	4402 ()	1101 ()	l		1408 (+)		4403 ()	4405 ()
SQUA	acAAAAtgg	1401 (-)	1400 (-)	1401 (-)		1045()	440-4	1401 (-)	1401 (-)	1401 (-)
HSFA4A	aciati	1431 (+)	1430 (+)	1431 (+)	1323 (+)	1314 (+)	1437 (+)	1431 (+)	1431 (+)	1431(+)
CBNAC	AAGCAa	1613 (-)	1612 (-)	1613 (-)	1505 (-)	1496 (-)	1616 (-)	1613 (-)	1613 (-)	1613 (-)

TCA-element involved in SA-signaling pathway present in PR1b promoter sequences from Rywal

Regulatory elements	PR1b_P1	PR1b_P2	PR1b_P3	PR1b_R1	PR1b_R2	PR1b_R3	PR1b_D1	PR1b_D2	PR1b_D3
5UTR Py-rich stretch	1	1	1				1	1	1
3-AF1 binding site						1			
AAGAA-motif	2	2	2	1	1	1	2	2	2
ABRE	1	1	1	1	1		1	1	1
ACE	1	1	1	1	1	1	1	1	1
ARE	1	1	1	1			1	1	1
AT-rich element			1	1	1	1	1	1	1
ATCT-motif	1	1	1	1	1	1	1	1	1
AT1_motif	1	1	1	1	1		1	1	1
Box 4	5	5	5	4	5	3	5	5	5
Box I	2	2	2	3	3	3	2	2	2
CAAT-box	28	28	28	26	28	27	28	28	28
CAT-box	1	1	1			1	1	1	1
CGTCA-motif	1	1	1			1	1	1	1
CTAG-motif						1			
G-Box	1	1	1	1	1		1	1	1
G-box	3	3	3	3	3	1	3	3	3
GCC box	1	1	1		1	1	1	1	1
GC-motif				1	1				
GT1-motif	3	3	3	1	2		4	3	3
HSE	3	3	3	3	3	3	4	3	3
l-box	1	1	1	1	2	1	1	1	1
LTR	1	1	1	1	1		1	1	1
MBS	1	1	1		2	1	1	1	1
MRE						1			
Skn-1_motif	1	1	1	1	1	2	1	1	1
Sp1	3	3	3	2	3	5	3	3	3
TATA-box	79	79	79	66	61	77	78	76	79
TC-rich repeats	3	3	3	3	3	3	3	3	3
TCA-element				1	1	1			
TGACG-motif	1	L	L			L	1	L	L
Unnamed8	1	1	1	L			1	1	1
circadian				1	1	1			

No expression or low expression

chorismate

ŠA

TGA2

PR1b

TGACG seq specific bind protein

Pathogen protein 1 PUFA:LA

JA

Basic helix-loophelix DNA-binding

superfamily

proteinase inhibitors

MYC2

no induction

Aminocyclopropanecarboxila

L-Met ^{oxidase}

ET

PTI 5 Ethylene response factor

TGA2 promoter is induced by salicylic acid

TGA2::YFP

PR1b promoter is induced by salicylic acid

PR1b::YFP

PR1b promoter is induced by ethylene

PR1b::YFP

induction with ET (24 h)

Conclusions

- Promoter sequences of the same gene differ between cultivars
- Some genes can have different promoter sequences within the same cultivar
 - promoter sequences of the same gene from different cultivars contain different regulatory elements
- Genes from SA signaling pathway: induction by INA

new crosstalk identified

Future plans: nuclear localisation signal → spatiotemporal analysis

Department of Biotechnology and Systems Biology

University of Potsdam Dr. Katrin Messerschmidt

prof. dr. Kristina Gruden dr. Špela Baebler dr. Anna Coll

The James Hutton Institute Dr. Ingo Hein

Funding:

Slovenian Research Agency