

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Unravelling the defence arsenal of the wild Solanum dulcamara to Phytophthora infestans

Laura Masini

SLU Alnarp

EAPR Pathology 2016 Dundee August 7th-11th

Phytophthora infestans

Phytophthora infestans is the causal agent of

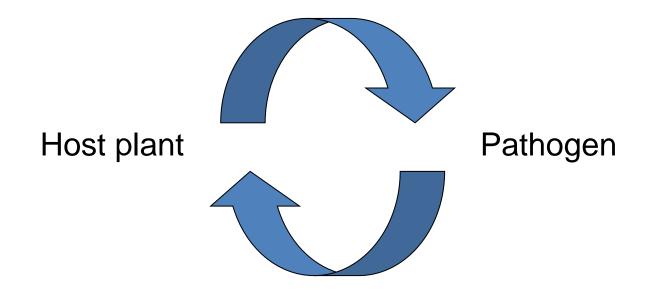
potato late blight

Its success in promoting disease \rightarrow secretion of

effectors

- suppress immunity
- promote disease

www.apsnet.org


How to control P. infestans:

- Fungicides \rightarrow

Half of all fungicides used in Sweden are sprayed on potato which is grown on only a few % of the cultivated land

- Breeding for new sources of resistance

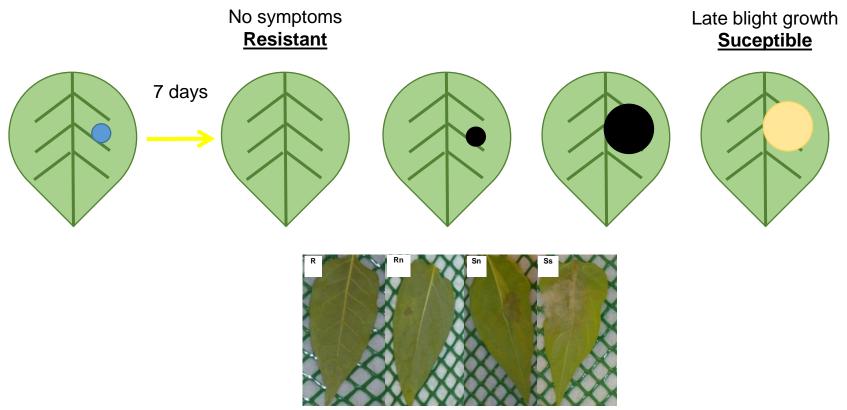
However, *P. infestans* can rapidly evolve \rightarrow defence does not work any more.

Overall aim:

To find new ways to combat potato late blight that are more durable over time.

Solanum dulcamara

Bittersweet nightshade


- Wild relative of potato
- Perennial
- Common in Skåne (South Sweden)
- It is a host for *P. infestans* (Vetukuri, Masini *et al.*, in prep.)

.Morelle Douce-amère. Solanum Dulcamara L.

Defence responses of *S. dulcamara* to *P. infestans*

Abreha, Lankinen et al., (unpublished)

Different S. dulcamara genotypes collected around Skåne show high degree of variability in response to P. infestans (DLA)

Objectives

1) What are the phenotypic differences among the *S. dulcamara* genotypes?

- accumulation of reactive oxygen species (ROS)
- pathogen biomass
- callose deposition

2) Is S. dulcamara tolerant to P. infestans?

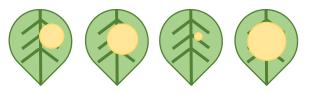
What is plant tolerance to disease?

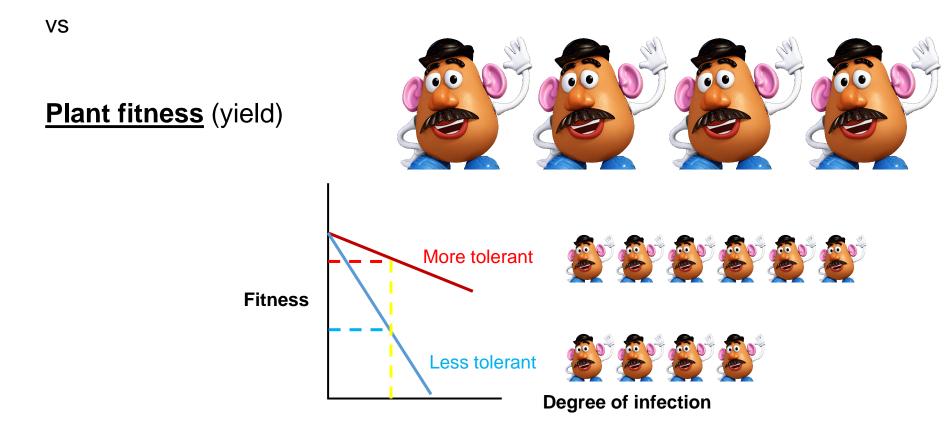
Tolerance: ability of a plant to reduce the damage caused by a pathogen on its fitness

or

A plant gets infected, but doesn't die. And maintains **yield**

Why studying tolerance is important?

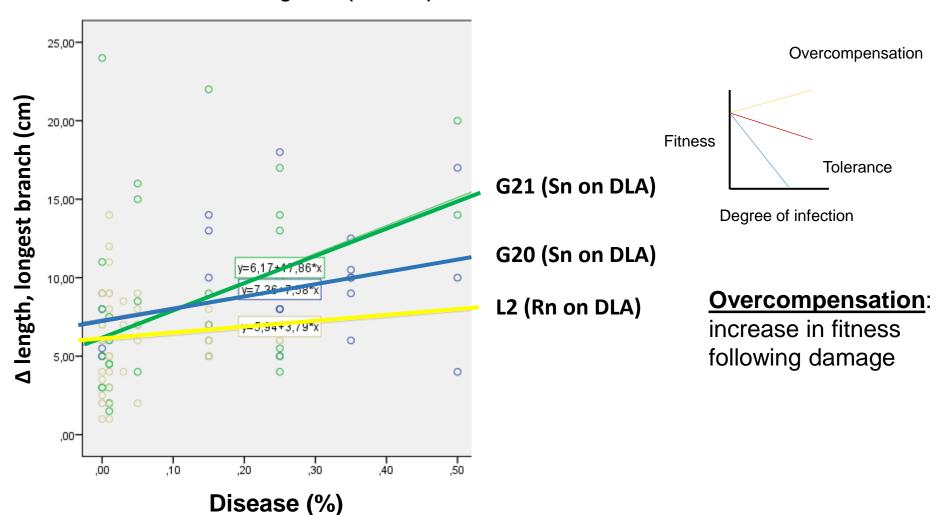

Tolerance saves the host from the pathogen's harm


- \rightarrow no selective pressure on the pathogen
- \rightarrow lower/no evolution of the pathogen
- \rightarrow more durable resistance

How can you tell if a plant is tolerant?

By studying the relationship between:

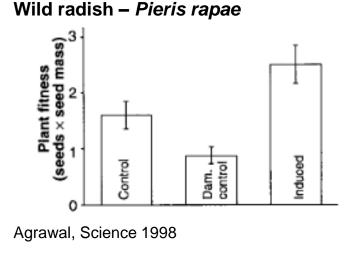
Degree of Infection

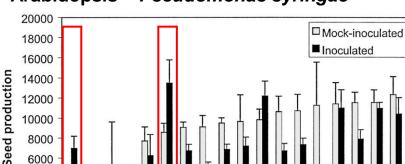


Studying plant tolerance to *P. infestans* in *S. dulcamara*

- Three different S. dulcamara genotypes (selected from previous DLA)
- *P. infestans* isolate 88069 15000 and 30000 sporangia/ml
- Mock vs *P. infestans* spray-infected plants
- Disease quantification at 20 DPI using a disease scale (%, adapted from quantification of *P. infestans* in the field)
- Fitness measurements (0 and 20 DPI):
 - Number of branches
 - Branch length
 - Number of leaves

S. dulcamara overcompensate in response to P. infestans




Disease vs main branch growth (0-20 DPI)

What do we know about overcompensation?

Mostly studied in plant – pest (and herbivores) interactions Involves:

- bud and meristem dormancy release
- carbon reallocation
- up-regulation of primary metabolism

8 15 2 6

Accession

9

16 11 14 18 10 7 3 13

Arabidopsis – Pseudomonas syringae

Still lacking \rightarrow genetic basis for overcompensation

4000 2000

0

19 1

5 17 12 4

Kover and Schaal, PNAS 2002

Summary and outlook

S. dulcamara overcompensates in response to P. infestans

- More S. dulcamara genotypes on test
- Study of tolerance/overcompensation in the field to quantify yield
- Transcriptomics and metabolomics to gain insights into the mechanism for tolerance/overcompensation

Acknowledgements

SLU Alnarp – Resistance biology

Lund University

Åsa Lankinen Erik Andreasson Laura Grenville-Briggs

Kibrom Abreha Erik Alexandersson Mia Mogren Pia Ohlsson Ramesh Vetukuri

Maja Brus Svante Resjö Marit Lenman Malin Dörre Erland Liljeroth Lars Råberg

Ingeborg Sörenssons fond

S. dulcamara overcompensates in response to P. infestans

Mock

P. infestans 30000 sporangia/ml

