Role of *Rhizoctonia solani* AG 3-PT inoculum source on disease development on potatoes in South Africa

JACQUIE VAN DER WAALS¹, NORMAN MUZHINJI¹, MARIETTE TRUTER², JAMES WOODHALL³

¹DEPARTMENT OF PLANT AND SOIL SCIENCES, UNIVERSITY OF PRETORIA; ²ARC-VOP; ³UNIVERSITY OF IDAHO

🔰 @ JACQUIEVDW

Rhizoctonia solani

BACKGROUND

- Inoculum: seed tuber- and/or soil-borne sclerotia or mycelium
 - Basidiospores during crop closure >> sexual reproduction >> polycyclic nature of disease
- Role of **soil- vs seed tuber-borne inoculum** in disease development: Contentious issue
- Mark-release-recapture experiments can provide answers
 - Allow tracking of inoculum sources during disease development >> determine origin of inoculum

Objectives

1. To investigate the contribution of *R. solani* AG 3-PT **seed tuberand soil-borne inoculum** to disease development

2. To investigate the **evolution** of an experimental population of *R*. *solani* AG 3-PT under field conditions

MOTIVATION

The role of each source of inoculum is a contentious issue

Understanding the contribution of each source of inoculum is an important step in implementing effective **disease management strategies** for *R. solani*

Materials and Methods

oUniversity of Pretoria experimental plots

oRCBD

oTreatments: (4 treatments x 4 reps = 16 plots)

Two distinct MLG groups of *R. solani* AG 3-PT isolates < (five isolates per group)

PCR-RFLP profiling

(Ceresini et al. 2002)

Disease assessments: 21 & 60 days after planting;

At harvest Isolations from diseased material

Materials and Methods

Contaminated seed, infested soil From previous trial – not reinoculated

Disease assessments: 60 days after planting; At harvest Isolations from diseased material PCR-RFLP Microsatellite analysis (Ferrucho et al. 2009)

Results: Disease index

	Root infection		Stolon canker		
Inoculum source	2013	2014	2013	2014	
Control	0.0 c*	0.0 c	0.0 d	0.0 d	
Soil	14.5 b	10.5 b	8.5 b	15.0 a	
Soil and tuber	17.5 a	12.5 a	10.2 a	12.0 b	
Tuber	13.0 b	6.0 c	5.0 c	8.0 c	

*Duncan's Multiple Range test P = 0.05

Results: Disease index

	Stem canker		Black scurf	
Inoculum				
source	2013	2014	2013	2014
Control	0.0 d*	0.0	0.0 c	0.0 d
Soil	22.5 c	14.5 c	13.4 b	5.8 c
Soil and tuber	37.0 a	22.5 a	17.6 a	11.3 a
Tuber	29.0 b	17.4 b	12.6 b	7.8 b

*Duncan's Multiple Range test P = 0.05

Results

PCR-RFLP genotyping to correlate isolates obtained from symptoms to inoculum source

Conclusions

Black scurf: Seed-borne inoculum more important

Root & stolon infection: **Soil- and seed-borne** inoculum equally important

Stem canker: Seed-borne inoculum more important

Conclusions

Recombination may occur in field under conducive environmental conditions >> gradual **increase in genetic diversity**

Production of **basidiospores** >> initial inoculum

May gradually result in **changes in genetic structure** of field populations from year to year

Ensure the use of **pathogen-free seed tubers** to eliminate seed-borne inoculum and the introduction of new genotypes of *R. solani* Apply to control measures to **limit development of sexual phase** in field

Acknowledgements

Funding bodies:

- o Potatoes South Africa
- o National Research Foundation
- British Society for Plant Pathology (Travel Award)

