University of Idaho

USE OF POST-HARVEST APPLIED PHOSPHOROUS **ACID FOR CONTROL OF POTATO STORAGE** DISEASES

LYNN WOODELL¹, NORA OLSEN¹, JEFF MILLER², PHILLIP B. HAMM³

- ¹UNIVERSITY OF IDAHO, KIMBERLY, IDAHO, USA
- ²MILLER RESEARCH, RUPERT, IDAHO, USA
- ³ OREGON STATE UNIVERSITY, HERMISTON, OREGON, USA

University of Idaho Potato Storage Research

- Built in 1991
- 9 computerized bins-2000 cwt each
- Independent controlled environments
- Easy manipulation of temperature, airflow and humidity

INTRODUCTION

INTRODUCTION

Miller Research LLC

PHOSPHOROUS ACID (PA)

- Phosphorous Acid is H3PO3 Also referred to as Phosphites, phosphonates, salts of phosphorous acid, phosphonic acid FRAC group 33 (low risk of resistance) Mono- and di-basic Na, K, and ammonium salts of phosphite PA not considered a good source of P nutrition for potatoes
- Can trigger a natural defense reaction in plants

OBJECTIVE

The objective of these studies over 15 years was to evaluate the efficacy of phosphorous acid products as a post-harvest spray to control multiple pathogens causing common storage diseases.

Pathogens included Phytophthora infestans (late blight), Phytophthora erythroseptica (pink rot), Helminthosporium solani (silver scurf) on naturally infected tubers in storage, Fusarium sambucinum (dry rot) and Pythium ultimum (leak).

ADDITIONAL STUDIES

Refined inoculation methods ITuber fry quality Induce tuber phytotoxicity **Multiple cultivars Other diseases**

- **I** Determined treatment rate, volume and timing

- Early studies on late blight US8 later US23

MATERIALS AND METHODS

Procedures	Late blight	Pink rot	Silver scurf	Dry rot	Pythium leak
Tuber prep	_	Wound	Mother tuber infected. Daughter tubers harvested.	Open wound	Tumble 1 minute
Inoculation	Submerge Spray table	Submerge Tumble and spray	Natural field	Spray table	Tumble and spray
Set Time	30-60 minutes	30-60 minutes	Not applicable	30-45 minutes	30-45 minutes
Treatment	Spray cabinet or table	Spray cabinet or table	Spray cabinet or table	Spray table	Spray table
Storage	3 weeks	2 weeks*	3-6 months	3-5 months	4 days*
Evaluation	Peel Incidence(%) Surface area infected(%)	Longitudinal halves Incidence(%) Severity	Rating scale1-4 Incidence(%) Severity	Longitudinal quarters Incidence(%) Severity	Longitudinal halves, Incidence(%)

INOCULATION

STORAGE

TREATMENT

POST-HARVEST SPRAY APPLICATION VOLUMES

Dry and 1.0 L/t

Dry and 2.1 L/t

Dry and 8.4 L/t

EVALUATIONS

Late blight

Pink rot

Dry Rot

I Pythium leak

Silver scurf

RESULTS

Efficacy on Pink rot

Efficacy on Late blight

EFFECTS OF ZOXAMIDE AND PHOSPHOROUS ACID ON PINK ROT

Treatment	Rate, L/t	Incidence ¹	Severity
Untreated		88 a	82 a
HPPA	0.08	57 b	53 a
Zoxamide	X	36 bc	30 ab
Zoxamide	2 x	21 cd	18 b
Zoxamide	4 x	7 ef	5 cd
Zoxamide	8 x	11 def	4 cd
Zoxamide	16 x	16 de	7 C
PA	0.42	7 f	2 d

¹Means with the same letter within a column are not significantly different at $p \le 0.05$

EFFECTS OF ZOXAMIDE AND PHOSPHOROUS ACID ON LATE BLIGHT

Treatment	Rate, L/t	Incidence ¹	Severity
Untreated		64 a	24 a
HPPA	0.08	44 a	15 b

Miller, J.S., Olsen, N., Woodell, L., Porter, L.D., and Clayson, S.2006.Post-harvest applications of zoxamide and phosphite for control of potato tuber rots caused by oomycetes at harvest.Am. J. Potato Res. 83:269-278.

	ТЛ		
Zoxamide	8 x	0 c	0 c
Zoxamide	16 x	0 c	0 c
PA	0.42	1 b	1 C
1 Moone with the e	amo lottor within a	column are not significantly	v different at n<0.05

¹Means with the same letter within a column are not significantly different at p ≤ 0.05

EFFICACY OF PHOSPHOROUS ACID ON PINK ROT USING WASHED AND UNWASHED TUBERS

Treatment (L/ton tubers)¹	Incidence*	Severity**
UTC washed	84.8 a	62.8 a
UTC unwashed	79.9 a	57.9 a
PA (0.1) washed	0.0 b	0.0 b
PA (0.1) unwashed	0.1 b	8.8 b

¹Values in the same column followed by the same letter are not significantly different. *Percentage of inoculated tubers developing symptoms of disease. **Average tuber area affected. Only tubers showing symptoms of disease were used for this assessment (healthy tubers not included).

EFFECT OF PHOSPHOROUS ACID RATE ON PINK ROT

Treatment	Rate, L/t	% Incidence ¹	Severity	
Untreated		85 a	63 a	
HPPA	0.08	75 a	35 b	
ΡΑ	0.01	26 b	13 c	
PA	0.02	20 bc	9 cd	
PA	0.05	8 bc	9 cd	
PA	0.10	0 c	0 d	
PA	0.21	5 bc	3 d	
¹ Means with the same letter within a column are not significantly different at p≤0.05				

TREATMENT PLACEMENT IN TONNE BOXES

PINK ROT INFECTION AFTER 77 DAYS IN TONNE BOX STORAGE

UTC	HPF

Rep 1
Rep 2
Rep 3
Rep 4

PA PA PA 0.05 L/t 0.10 L/t 0.42 L/t

LATE BLIGHT INFECTION AFTER 77 DAYS IN TON BOX STORAGE

UTC HPPA 0.08 L/t

Rep 1

Rep 2

PAPAPA0.05 L/t0.10 L/t0.42 L/t

Incidence

Incidence

Post-inoculation Interval (Hours)

RESULTS ON SILVER SCURF

PHOSPHOROUS ACID ON SILVER SCURF

Incidence (%) of silver scurf				
	~3 months	in storage	~6 months in storage	
Year	Water-treated control	Phosphorous Acid	Water-treated control	Phosphorous Acid

Efficacy when used as a seed treatment with and without a post harvest spray

spray and both at 3 different rates and 3 volumes

2010	77	40	75	60
2011	32	5	19	3
2013	67	7	31	5
average	45	13	30	16

Efficacy when used as a foliar treatment, post harvest

SILVER SCURF CONCLUSIONS

- Using a phosphorous acid product can reduce silver scurf incidence and severity
- Label rate is effective. Lowering may cause less consistent results.
- Applying higher volume could increase free moisture that can produce favorable conditions for other diseases. Lower volumes may not be adequate for commercial application with high volumes of potatoes being treated.
- Importance of an overall silver scurf reduction program that includes seed and field component to decrease the level at harvest and in-storage.

PHOSPHOROUS ACID EFFICACY ON OTHER DISEASES

Incidence (%) of Dry rot

	~3 months in storage	
Year	Water-treated	Phospho
	control	Acid
2006	29	28
2007	50	59
2008	47	57
2009	64	75
2010	35	36
2011	29	31
2012	80	71
average	48	50

Incidence (%) of Pythium			
	4 days in storage		
Year	Not-treated control	Phosphorous Acid	
2011	46	40	
2012	50	52	
2013	22	18	
2016	13	16	
2017	49	47	
average	36	35	

EFFECT OF PHOSPHOROUS ACID ON TUBER PROCESSING QUALITY

Quality ¹	Untreated Control	Phosphorous acid		
Glucose (%fwt)	0.035 a	0.033 a		
Sucrose (%fwt)	0.103 a	0.097 a		
Mean fry color ²	48.0 a	50.0 a		
¹ Values in the same row followed by the same letter are not significantly different.				

²USDA fry color rating $\#1 \ge 44, \#2 < 44$ but $\ge 35, \#3 = < 35$ but ≥ 26 reflectance

PHOSPHOROUS ACID ON SEED SEED LOTS TREATED WITH LABEL RATE AND 2X RATE

	Russet Burbank	Russet Norkotah	Dark Red Norland
Sprout rating	NS	NS	NS
Sprout wt	NS	2x rate- lower	NS
Enlarged lenticels	NS	NS	NS
Pitting	NS	NS	NS
Emergence	NS	NS	-
Stem #/plant	NS	NS	-
Specific Gravity	NS	NS	_
Total,US1,US2, culls yield	NS	NS	
Size categories	NS	2x rate more 312-354g size	-

CONCLUSION

- Phosphorous Acid post-harvest spray applications:
- do not offer significant dry rot or leak control
- provide reduction of late blight, pink rot and silver scurf disease development
- should be considered as a tool in a post-harvest disease control program

Acknowledgements

Idaho Potato Commission

Northwest Potato Research Consortium

Chemical Companies for funding and/or product

