Influence of temperature on *in vitro* and *in vivo* growth of bacteria of genus *Pectobacterium* and *Dickeya*

Renata Lebecka

Plant Breeding and Acclimatization Institute – National Research Institute, POLAND

Overview

Introduction

optimal temperature of growth of 'Dickeya solani'

□ bacterial growth *in vitro* in different temperatures

□ tuber soft rot in different temperatures

summary

Soft rot of potato tubers - losses

A single rotting tuber contaminates c. 100 kg of potatoes during mechanical grading (Elphinstone and Perombelon, 2007)

Yield reductions of 20–25% resulting from Dickeya infections - on various potato cultivars, where disease incidence was greater than 15% (Tsror et al., 2009)

Strict tolerances in the Netherlands have led to increased direct losses of up to €30M annually (Prins and Breukers, 2008 - after Toth et al. 2002)

Bacteria of great concern in potato production

Pectobacterium atrosepticum P. carotovorum subsp. carotovorum Dickeya dianthicola

'D. solani'

Dickeya solani Fera, UK Crown Copyright

Potato resistance to Dickeya spp.

All major potato cultivars in England were susceptible to *D. dianthicola*, with some variation in severity of blackleg symptoms (Toth et al., 2011)

Certain cultivars have also been identified as highly susceptible to **Dickeya** spp. under Israeli conditions (Tsror et al., 2009)

Point inoculation method

Factors inflencing soft rot development

Virulence of bacteria Dickeya spp.

Hypoxia

Oxygen depleted due to respiration of tubers – not renewed by diffusion from the air because of the water film. Hypoxia impairs oxygen-dependent host resistance system: phytoalexins, phenolics, free radicals, etc., inhibits cell wall lignification and suberization (Perombelon, 2002)

Tubers inoculated after wounding showed **significantly heavier symptoms of infection** in 3 % and 10 % of CO₂ than tubers incubated in 0% of CO₂

(Harper & Cunnington, 2011)

Rotting of tuber tissue as a function of temperature and time of incubation

Time [days]

Rotting of tuber tissue as a function of temperature and time of incubation

Time [days]

Infection of tuber tissue depend on temperature

Time [days]

Dickeya spp. SCRI 4063

20°C, 6 days

30°C, 5 days

Potato resistance to soft rot is relative

Bacteria cultures

- P. atrosepticum 2/95M [Pa]
- P. c. subsp. carotovorum (IFB 5A/5/2012)*, [Pcc]
- D. solani (IFB 0099)* [Ds]
- D. dianthicola (IFB0157)* [Dd]

*kindly provided by **prof. E. Łojkowska**, Intercollegiate Faculty of Biotechnology, UG-MUG, Gdańsk, Poland

- Lysogeny Broth (LB),130 rpm min-1 in 250 ml Erlenmayer flasks
- The bacteria were kept in the temperatures: 28, 30, 32, 34, 35, 36, and 37°C in three replications
- For each combination two measurements of OD 600, after 6 and 8.5 hours of incubation, were performed

Optimal temperatures of growth of *D. solani* 99 is 34°C, 35°C Materials and methods - the growth of bacteria (**Pa, Pcc, Ds, Dd**) in different temperatures

- 1 ml of each of bacterial 24 h cultures [OD₆₀₀ = 0.100 0.108] was added to 50 ml of LB
- LB, 130 rpm min-1, in 250 ml Erlenmayer flasks
- □ temperatures 20 °C, 25 °C, and 30 °C
- □ For each combination 8 times measurements of OD ₆₀₀ were performed within 24 32 hours hours of incubation (3 rep.)

Materials and methods – testing tuber soft rot resistance in temperatures 26°C, 30°C, 34°C

Cultivars – susc. Irys, medium res. Sleza

Bacteria – Pc, Ds

Inoculum – 0.095 OD₆₀₀

Incubation – 3 days

Weight of rotten tissue [g]

Four tubers, two inoculation sites

Soft rot [g] of susceptible cv. Irys and medium-resistant cv. Ślęza after three days in T 26, 30 and 34°C

Susceptible cv. Irys and medium resistant cv. Ślęza inoculated with *D. solani* after three days in T 26°C

cv. Irys

Medium-resistant cv. Ślęza inoculated with *D. solani* after three days in T 26°C and 34°C

Cultivar - 42% of variance

Bacteria - 33% of variance

Cultivar x Bacteria 11 %

Cultivar x Temperature - 9% of variance

Temperature - 2% of variance

The optimal temperatures of growth for *D. solani* IFB0099 were 34 °C and 35 °C

Pcc, Ds, Dd in vitro growth increased with temperature in range 20 - 30 °C,

Pcc multiplication was significantly faster than all other bacteria in temperature from 20 to 30 °C

Ds was significantly more aggressive to potato tubers than Pcc in temperatures from 26 to 34 °C

- □ Growth of Pa was significantly slower than growth of Ds and Dd at 30 °C, but not at temperatures 20 and 25 °C
- The significant differences in resistance of two cultivars (susceptible and medium res.) were observed in temperatures 26 and 30 °C but not in 36 °C, for both bacteria Pcc and Ds.
- □ The resistance of medium resistant cv. Sleza was not expressed in temperature 34 °C after inoculation with Ds and Pcc