SESSION 3

BACTERIAL DISEASES

O9 Characterization and diversity of *Pectobacterium* and *Dickeya* species in the Netherlands Michiel Pel ((NIVIP, NVWA), WUR, The Netherlands)

O11 Glycoalkaloids from Solanum spp leaves modify virulence factors in Dickeya solani and Pectobacterium brasiliense sp. nov. Anna Grupa-Urbańska (IHAR-PIB, Poland)

O12 Increase of glycoalkaloid content in potato tubers by greening as a method to reduce the spread of Pectobacterium and Dickeya spp. in seed production systems

Brice Dupuis (Agroscope, Switzerland)

P13 RNAseq expression analysis of resistant and susceptible potato tubers at early stage of infection with Dickeya solani Renata Lebecka (IHAR-PIB, Poland)

P15 Evaluation of the phenotypic and genotypic diversity of Ralstonia solanacearum in metropolitan France and the risks for emergence of other species of the *Ralstonia* spp. complex

Antinéa Sallen (ANSES/inov3PT, INRAE-IGEPP, France)

P16 Is there any risk for potato crops to be infected by Apiaceae haplotypes of 'Candidatus Liberibacter solanacearum'?

Laure Berton (FN3PT, France)

P17 Purple top complex disease a threat for the Ecuadorian and South America potato production and diversity

Xavier Cuesta (INIAP, Ecuador)

P18 Virulence of novel Ralstonia pseudosolanacearum (phylotype I) strains from rose, blueberry and mandevilla on seed potato

Bo van Doorn ((NIVIP, NVWA), WUR, The Netherlands)

Netherlands Food and Consumer Product Safety Authority Ministry of Agriculture, Nature and Food Quality

Characterization and diversity of *Pectobacterium* and *Dickeya* species in the Netherlands

Chiel Pel

National Institute for Vectors, Invasive plants and Plant health (NIVIP) Netherlands Food and Consumer Product Safety Authority (NVWA)

National Plant Protection Organisation (NPPO-NL)

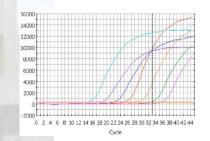
Wageningen ≠ WUR

Not everyone from
Wageningen is part of
Wageningen University and
Research (WUR)

Intern gebruik

Facts and Organizational Structure of NIVIP

- National Institute for Vectors, Invasive plants and Plant health
- > Head: dr. ir. Mieke Reyniers (+ 5 Managers)
- +/- 110 colleagues
- > Divided over 8 departments:
 - Bacteriology
 - Virology
 - Mycology
 - Entomology
 - Nematology
 - Molecular Biology
 - Invasive Plants
 - Centre for Monitoring of Vectors
 - + Admin, Advisors, greenhouse staff





COMMISSION IMPLEMENTING REGULATION (EU) 2019/2072

of 28 November 2019

establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019

PART A

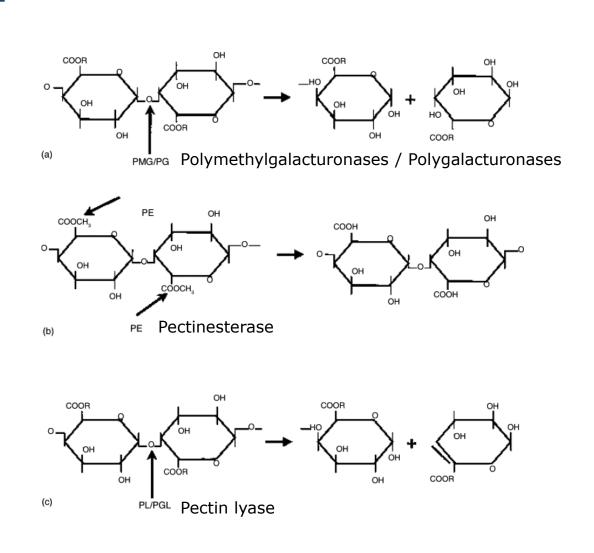
			ned by EPPO
PE	STS NOT KNOWN TO OCCUR IN THE UNION TERRITORY		
Qu	arantine Pests and their codes assigned by EPPO	PART B	
1.	Bacteria		
1.	Candidatus Liberibacter africanus [LIBEAF]		
2.	Candidatus Liberibacter americanus [LIBEAM]		PESTS KNOWN TO OCCUR IN THE UNION TERRITORY
3.	Candidatus Liberibacter asiaticus [LIBEAS]		Quarantine Pests and their codes assigned by EPPO
4.	Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges) Collins and Jones [CORBFL]		1. Bacteria
5.	Pantoea stewartii subsp. stewartii (Smith) Mergaert, Verdonck & Kersters [ERWIST]		1. Datteria
6.	Ralstonia pseudosolanacearum Safni et al. [RALSPS]		1. Clavibacter sepedonicus (Spieckermann and Kottho) Nouioui et al. [CORBSE]
7.	Ralstonia syzygii subsp. celebesensis Safni et al. [RALSSC]		2. Ralstonia solanacearum (Smith) Yabuuchi et al. Emend. Safni et al. [RALSSL]
8.	Ralstonia syzygii subsp. indonesiensis Safni et al. [RALSSI]		3. Xylella fastidiosa (Wells et al.) [XYLEFA]
9.	Xanthomonas oryzae pv. oryzae (Ishiyama) Swings et al. [XANTOR]		
10.	Xanthomonas oryzae pv. oryzicola (Fang et al.) Swings et al. [XANTTO]		
11.	Xanthomonas citri pv. aurantifolii (Schaad et al.) Constantin et al. [XANTAU]		
12.	Xanthomonas citri pv. citri (Hasse) Constantin et al. [XANTCI]		

Research activities

- > Development of diagnostic tools/protocols
- > Phylogenetic research
- > Epidemiologic research
 - Risk assesment
 - Advisory tasks

- > Causes more crop loss than any other bacterial disease
 - Plants in field/greenhouse
 - Food in storage
- > Affects succulent plant parts (fruits, tubers, stems and bulbs)
- > Plants in nearly every plant family
 - Potato, carrot, tomato, cucumbers, melons, squash, pumpkins, cabbage, cauliflower.

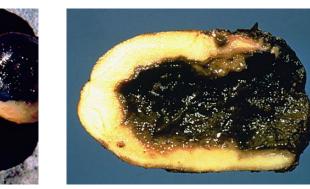
- > Wide range of temperatures (20°C 25°C)
- > Wet conditions
- > Symptoms
 - Water soaked spots -> sunken soft spots
 - Tissue becomes discolored and mushy
 - Seepage of moisture
 - Strong smell



- > Pseudomonas
- > Bacillus
- > Burkholderia
- > Pantoea
- > Enterobacter
- > Klebsiella
- > Leuconostoc
- > Clostridium

- > Pectobacterium
- > Dickeya

- Soft Rot Pectobacteriaceae (SRP)
 - Dickeya
 - After the American phytopathologist Robert S. Dickey, for his contribution to research on the *Erwinia chrysantemi* complex
 - Pectobacterium
 - A pectolytic/pectinolytic bacterium
- Produce different Plant Cell Wall degrading enzymes (PCWDE)
 - Pectinases, cellulases, proteases



Blackleg of potato

- > Severe losses in potato industry
 - Europe
 - Dickeya solani
 - Pectobacterium brasiliense
 - USA
 - Dickeya dianthicola
- In NL average annual losses of €12 million in seed potato industry

Current taxonomy

Family Pectobacteriaceae

1 Name: Pectobacteriaceae Adeolu et al. 2016

Category: Family

() Proposed as: fam. nov.

1 Etymology: Pec.to.bac.te.ri.a.ce'ae. N.L. neut. n. Pectobacterium, type genus of the family; L. fem. pl. suff. -aceae, ending to denote a family; N.L. fem. pl. n. Pectobacteriaceae, the family whose nomenclatural type is the genus Pectobacterium

(i) Gender: feminine

① Type genus: Pectobacterium Waldee 1945 (Approved Lists 1980)

^① Valid publication: Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny *Pectobacteriaceae* fam. nov., *Yersiniaceae* fam. nov., *Hafniaceae* fam. nov., *Morganellaceae* fa

() IJSEM list: Oren A, Garrity GM. Notification list. Notification that new names and new comb

▼ Child taxa:

Name	Nomenclatural status	Taxonomic status ▼
Acerihabitans Lee et al. 2021	validly published under the ICNP	correct name
Biostraticola Verbarg et al. 2008	validly published under the ICNP	correct name
Brenneria Hauben et al. 1999	validly published under the ICNP	correct name
Dickeya Samson et al. 2005	validly published under the ICNP	correct name
Lonsdalea Brady et al. 2012	validly published under the ICNP	correct name
Musicola Hugouvieux-Cotte-Pattat et al. 2021	validly published under the ICNP	correct name
Pectobacterium Waldee 1945 (Approved Lists 1980)	validly published under the ICNP	correct name
Sodalis Dale and Maudlin 1999	validly published under the ICNP	correct name
"Affinibrenneria" Bian et al. 2021	not validly published	
<i>"Bruguierivorax"</i> Li <i>et al.</i> 2021	not validly published	
"Prodigiosinella" Duprey et al. 2019	not validly published	

Current tax

▼ Child taxa:

> 20 species

Name	Nomenclatural status	Taxonomic status ▼
Pectobacterium actinidiae Portier et al. 2019	validly published under the ICNP	correct name
Pectobacterium aquaticum Pédron et al. 2019	validly published under the ICNP	correct name
Pectobacterium aroidearum Nabhan et al. 2013	validly published under the ICNP	correct name
Pectobacterium atrosepticum (van Hall 1902) Gardan et al. 2003	validly published under the ICNP	correct name
Pectobacterium betavasculorum (Thomson et al. 1984) Gardan et al. 2003	validly published under the ICNP	correct name
Pectobacterium brasiliense Portier et al. 2019	validly published under the ICNP	correct name
Pectobacterium cacticida corrig. (Alcorn et al. 1991) Hauben et al. 1999	validly published under the ICNP	correct name
Pectobacterium carnegieana (Standring 1942) Brenner et al. 1973 (Approved Lists 1980)	validly published under the ICNP	correct name
Pectobacterium carotovorum (Jones 1901) Waldee 1945 (Approved Lists 1980)	validly published under the ICNP	correct name
Pectobacterium fontis Oulghazi et al. 2019	validly published under the ICNP	correct name
Pectobacterium odoriferum (Gallois et al. 1992) Portier et al. 2019	validly published under the ICNP	correct name
Pectobacterium parmentieri Khayi et al. 2016	validly published under the ICNP	correct name
Pectobacterium parvum Pasanen et al. 2020	validly published under the ICNP	correct name
Pectobacterium peruviense Waleron et al. 2022	validly published under the ICNP	correct name
Pectobacterium polaris Dees et al. 2017	validly published under the ICNP	correct name
Pectobacterium polonicum Waleron et al. 2019	validly published under the ICNP	correct name
Pectobacterium punjabense Sarfraz et al. 2018	validly published under the ICNP	correct name
Pectobacterium quasiaquaticum Ben Moussa et al. 2021	validly published under the ICNP	correct name
Pectobacterium versatile Portier et al. 2019	validly published under the ICNP	correct name
Pectobacterium wasabiae (Goto and Matsumoto 1987) Gardan et al. 2003	validly published under the ICNP	correct name
Pectobacterium cacticidum (Alcorn et al. 1991) Hauben et al. 1999	orthographic variant	misspelling
Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 (Approved Lists 1980)	validly published under the ICNP	synonym
Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 (Approved Lists 1980)	validly published under the ICNP	synonym
Pectobacterium rhapontici (Millard 1924) Patel and Kulkarni 1951 (Approved Lists 1980)	validly published under the ICNP	synonym
"Pectobacterium delphinii" Waldee 1945	not validly published	
"Candidatus Pectobacterium macerans" corrig. Shirshikov et al. 2018	not validly published	
"Candidatus Pectobacterium maceratum" Shirshikov et al. 2018	orthographic variant	
"Pectobacterium melonis" (Giddings 1910) Waldee 1945	not validly published	
"Pectobacterium zantedeschiae" Waleron et al. 2019	not validly published	

Current taxonomy

▼ Child taxa:

Name	Nomenclatural status	<u>Taxonomic status</u> ▼
Dickeya aquatica Parkinson et al. 2014	validly published under the ICNP	correct name
Dickeya chrysanthemi (Burkholder et al. 1953) Samson et al. 2005	validly published under the ICNP	correct name
Dickeya dadantii Samson et al. 2005	validly published under the ICNP	correct name
Dickeya dianthicola Samson et al. 2005	validly published under the ICNP	correct name
Dickeya fangzhongdai Tian et al. 2016	validly published under the ICNP	correct name
Dickeya lacustris Hugouvieux-Cotte-Pattat et al. 2019	validly published under the ICNP	correct name
Dickeya oryzae Wang et al. 2020	validly published under the ICNP	correct name
Dickeya parazeae Hugouvieux-Cotte-Pattat and Van Gijsegem 2021	validly published under the ICNP	correct name
Dickeya poaceiphila Hugouvieux-Cotte-Pattat et al. 2020	validly published under the ICNP	correct name
Dickeya solani van der Wolf et al. 2014	validly published under the ICNP	correct name
Dickeya undicola Oulghazi et al. 2019	validly published under the ICNP	correct name
Dickeya zeae Samson et al. 2005	validly published under the ICNP	correct name
Dickeya dieffenbachiae Samson et al. 2005	validly published under the ICNP	synonym
Dickeya paradisiaca (Fernandez-Borrero and Lopez-Duque 1970) Samson et al. 2005	validly published under the ICNP	synonym

> 12 species

▼ Child taxa:

Name v	Nomenclatural status	Taxonomic status
Dickeya dadantii subsp. dadantii (Samson et al. 2005) Brady et al. 2012	validly published under the ICNP	correct name
Dickeya dadantii subsp. dieffenbachiae (Samson et al. 2005) Brady et al. 2012	validly published under the ICNP	correct name

Current taxonomy

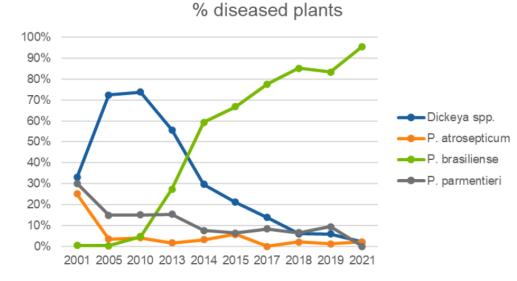
▼ Child taxa:

<u>Name</u> ▼	Nomenclatural status <u>Taxonomic status</u>	
Musicola keenii Hugouvieux-Cotte-Pattat et al. 2021	validly published under the ICNP correct name	>
Musicola paradisiaca (Fernandez-Borrero and Lopez-Duque 1970) Hugouvieux-Cotte-Pattat et	al. 2021 validly published under the ICNP correct name	

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY

Volume 71, Issue 10

Research Article


Proposal for the creation of a new genus *Musicola* gen. nov., reclassification of *Dickeya paradisiaca* (Samson *et al.* 2005) as *Musicola paradisiaca* comb. nov. and description of a new species *Musicola keenii* sp. nov. \odot

Nicole Hugouvieux-Cotte-Pattat¹, Cécile Jacot des-Combes², Jérôme Briolay², Leighton Pritchard³

Published: 07 October 2021 | https://doi.org/10.1099/ijsem.0.005037

Blackleg of potato

- Most prevalent species appears to be dynamic
- Many different species are present in NL

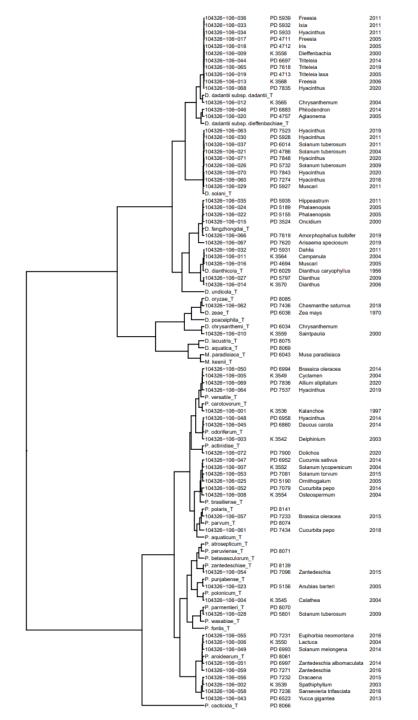
Source Inge van Duivenbode, NAK Emmeloord

Blackleg of potato

- Most prevalent species appears to be dynamic
- Many different species are present in NL

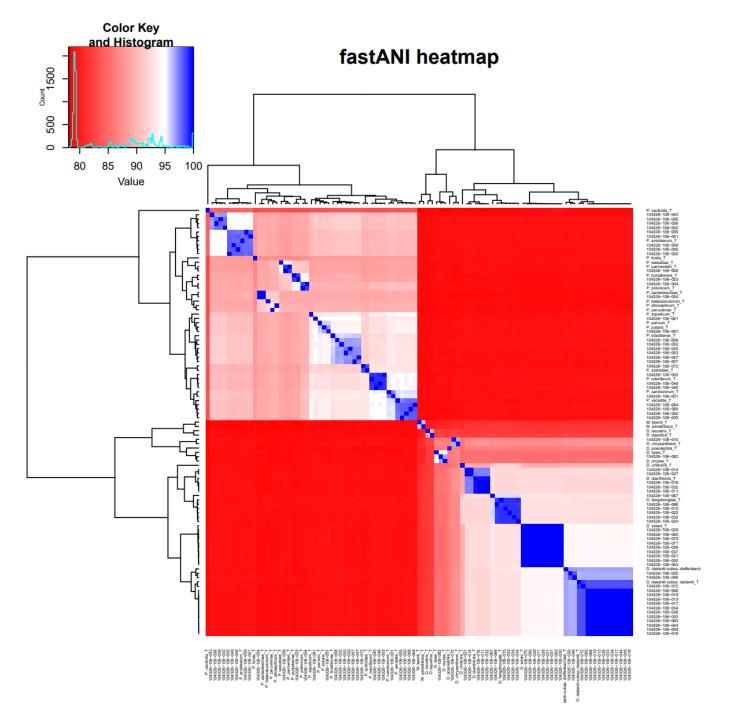
Species	# isolates
P. actinidiae	1
P. aquaticum	1
P. atrosepticum	1
P. brasiliense	151
P. parmentieri	5
P. polaris	4
P. punjabense	6
P. versatile	1
Pectobacterium spp.	139
D. solani	17
D. chrysanthemi	5
D. dadantii	3
D. zeae	35

Source Inge van Duivenbode, NAK Emmeloord

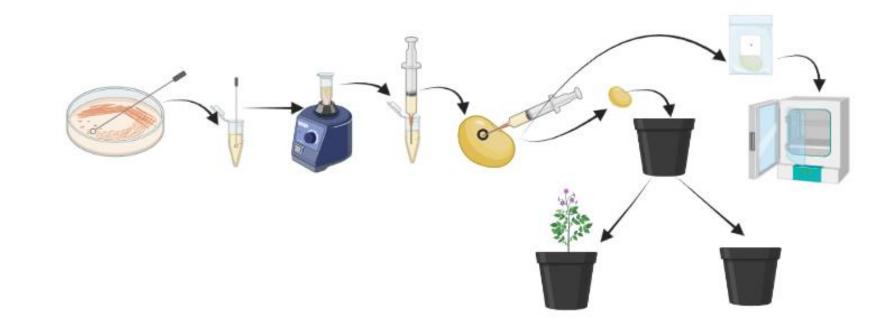

Collection at NIVIP

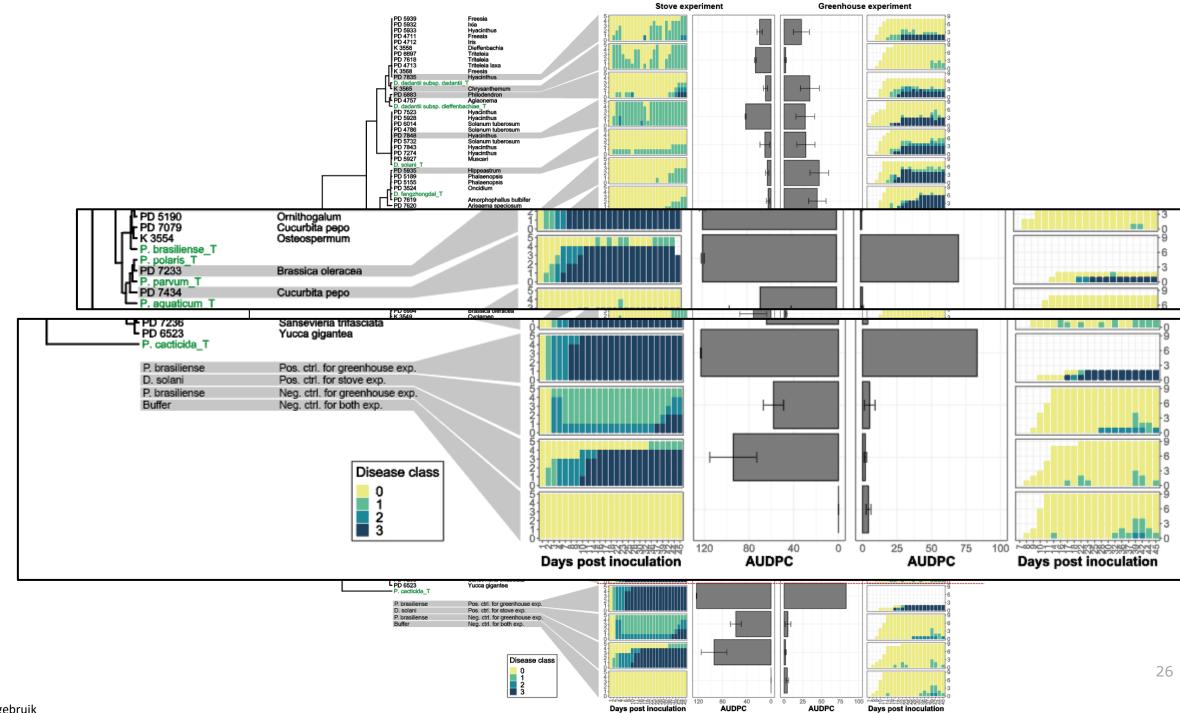
- > Which species are found in the Netherlands?
 - We get questions from third countries
 - Identify potential dangers
- ~400 isolates in collection (1980's until now)
 - E. chrysanthemi or E. carotovora

>


- > Selected ~ 70 isolates
- > Sampled in the Netherlands
 - But not necessarily from the Netherlands!
- Collected all type-strains
- > Illumina sequencing
 - ~ 70 isolates
 - Type-strain of which no WGS data was available at NCBI
- *de novo* assembly (RAPT at NCBI)
- > Fast-ANI

Intern gebruik


	M. Keenii_1			
	r104326-106-050	PD 6994	Brassica oleracea	2014
	104326-106-005	K 3549	Cyclamen	2004
	104326-106-069	PD 7836	Allium stipitatum	2020
	104326-106-064	PD 7537	Hyacinthus	2019
	P. versatile_T			
	P. carotovorum_T			
	104326-106-001	K 3536	Kalanchoe	1997
	r104326-106-048	PD 6958	Hyacinthus	2014
	104326-106-045	PD 6860	Daucus carota	2014
	P. odoriferum T			
	104326-106-003	K 3542	Delphinium	2003
	P. actinidiae_T		-	
	104326-106-072	PD 7900	Dolichos	2020
	r104326-106-047	PD 6952	Cucumis sativus	2014
	104326-106-007	K 3552	Solanum lycopersicum	2004
	-104326-106-053	PD 7081	Solanum torvum	2015
	104326-106-025	PD 5190	Ornithogalum	2005
	-104326-106-052	PD 7079	Cucurbita pepo	2014
	L104326-106-008	K 3554	Osteospermum	2004
	P. brasiliense_T			
	P. polaris_T	PD 8141		
	-104326-106-057	PD 7233	Brassica oleracea	2015
	P. parvum_T	PD 8074		
	4-104326-106-061	PD 7434	Cucurbita pepo	2018
	P. aquaticum_T			
	P. atrosepticum_T			
	P. peruviense_T	PD 8071		
	P. betavasculorum T			
	P. zantedeschiae	PD 8139		
	104326-106-054	PD 7096	Zantedeschia	2015
	P. punjabense_T			
	104326-106-023	PD 5156	Anubias barteri	2005
	P. polonicum_T			
	104326-106-004	K 3545	Calathea	2004
	P. parmentieri_T	PD 8070		
	104326-106-028	PD 5801	Solanum tuberosum	2009
	P. wasabiae_T			
	P. fontis_T			
I _ I	104326-106-055	PD 7231	Euphorbia neomontana	2016
	104326-106-006	K 3550	Lactuca	2004
	104326-106-049	PD 6993	Solanum melongena	2014
	P. aroidearum_T	PD 8061		
	-104326-106-051	PD 6997	Zantedeschia albomaculata	2014
	L104326-106-059	PD 7271	Zantedeschia	2016
	104326-106-056	PD 7232	Dracaena	2015
	104326-106-002	K 3539	Spathiphyllum	2003
	L 104326-106-058	PD 7236	Sansevieria trifasciata	2016
	L104326-106-043	PD 6523	Yucca gigantea	2013
	P. cacticida T	PD 8066		


		104326-106-036	PD 5939	Freesia	2011
		104326-106-033	PD 5932	Ixia	2011
		104326-106-034	PD 5933	Hyacinthus	2011
		104326-106-017	PD 4711	Freesia	2005
		104326-106-018	PD 4712	Iris	2005
		104326-106-009	K 3558	Dieffenbachia	2000
		104326-106-044	PD 6697	Triteleia	2014
		104326-106-065	PD 7618	Triteleia	2019
		104326-106-019	PD 4713	Triteleia laxa	2005
		104326-106-013	K 3568	Freesia	2006
		104326-106-068	PD 7835	Hyacinthus	2020
		D. dadantii subsp. dad	antii_T		
		L104326-106-012	K 3565	Chrysanthemum	2004
	I	104326-106-046	PD 6883	Philodendron	2014
	I	-104326-106-020	PD 4757	Aglaonema	2005
	I	D. dadantii subsp. dief			
	I	104326-106-063	PD 7523	Hyacinthus	2019
		104326-106-030	PD 5928	Hyacinthus	2011
		104326-106-037	PD 6014	Solanum tuberosum	2011
		104326-106-021	PD 4786	Solanum tuberosum	2004
		104326-106-071	PD 7848	Hyacinthus	2020
		104326-106-026	PD 5732	Solanum tuberosum	2009
		104326-106-070	PD 7843	Hyacinthus	2020
		104326-106-060	PD 7274	Hyacinthus	2016
		104326-106-029	PD 5927	Muscari	2011
		D. solani_T	PD 5935	1 line and the second	0044
		104326-106-035	PD 5935 PD 5189	Hippeastrum Phalaenopsis	2011 2005
		104326-106-022	PD 5155	Phalaenopsis	2005
		104326-106-015	PD 3135 PD 3524	Oncidium	2005
		D. fangzhongdai T	PD 3324	Oncidium	2000
		104326-106-066	PD 7619	Amorphophallus bulbifer	2019
		104326-106-067	PD 7620	Arisaema speciosum	2019
		104326-106-032	PD 5931	Dahla	2011
		104326-106-011	K 3564	Campanula	2004
		104326-106-016	PD 4694	Muscari	2005
		D. dianthicola T	PD 6029	Dianthus caryophyllus	1956
		t104326-106-027	PD 5797	Dianthus	2009
		104326-106-014	K 3570	Dianthus	2006
		D. undicola_T			
		D. oryzae_T	PD 8085		
		104326-106-062	PD 7436	Chasmanthe saturnus	2018
		D. zeae_T	PD 6036	Zea mays	1970
Ι.	'	D. poaceiphila_T			
		D. chrysanthemi_T	PD 6034	Chrysanthemum	
		104326-106-010	K 3559	Saintpaulia	2000
	_	D. lacustris_T	PD 8075		
		D. aquatica_T	PD 8069		
		M. paradisiaca_T	PD 6043	Musa paradisiaca	
	_	M. keenii T			

> Is the presence of these isolates a problem?

Conclusions

- > Large diversity of *Pectobacterium* and *Dickeya* isolates was found
- > Only a limited number appear to be highly virulent on potato
- > It is hard to link virulence to the phylogenetic position

Acknowledgements

- Bacteriology team
 - Marisja Boksebeld
- > Molecular biology team
 - Tom Raaymakers
 - Michael Visser
- > NAK
 - Inge van Duivenbode

Glycoalkaloids from Solanum spp leaves modify virulence factors in Dickeya solani and Pectobacterium brasiliense sp. nov.

Grupa-Urbańska A, Sołtys-Kalina D, Lebecka R

The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute

Pectobacterium brasiliense (Pcb)

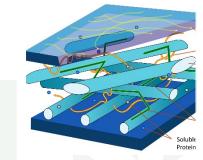
Strain: Pcb3M16 Reference: Lebecka & Michalak, 2020

Dickeya solani (Ds)

Strain: IFB0099 Reference: Golanowska et al., 2015

Introduction to bacterial pathogens and their impact

Classification: Gram-negative bacteria family Pectobacteriaceae.


Major threats to potato crops, causing big yearly losses.


Ds and Pcb cause **soft rot** and **blackleg**, among top **10** destructive plant pathogens.

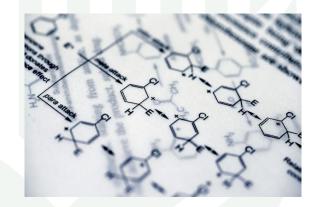
Chemical protection against bacterial diseases is **not** practiced.

Ds and Pcb virulence is mainly due to plant cell wall degrading enzymes (PCWDEs).



The expression of these enzymes is controlled by **quorum sensing (QS)** systems.

Glycoalkaloids (GAs) in Potato Plants



Potato plants contain protective metabolites that defend against threats like insects, herbivores, and pathogens. Potato plants produce glycoalkaloids (GAs), toxins that defend against bacteria, fungi, viruses, and insects.

GAs Composition: α-chaconine and α-

solanine: 95% of total GAs.

Other GAs:

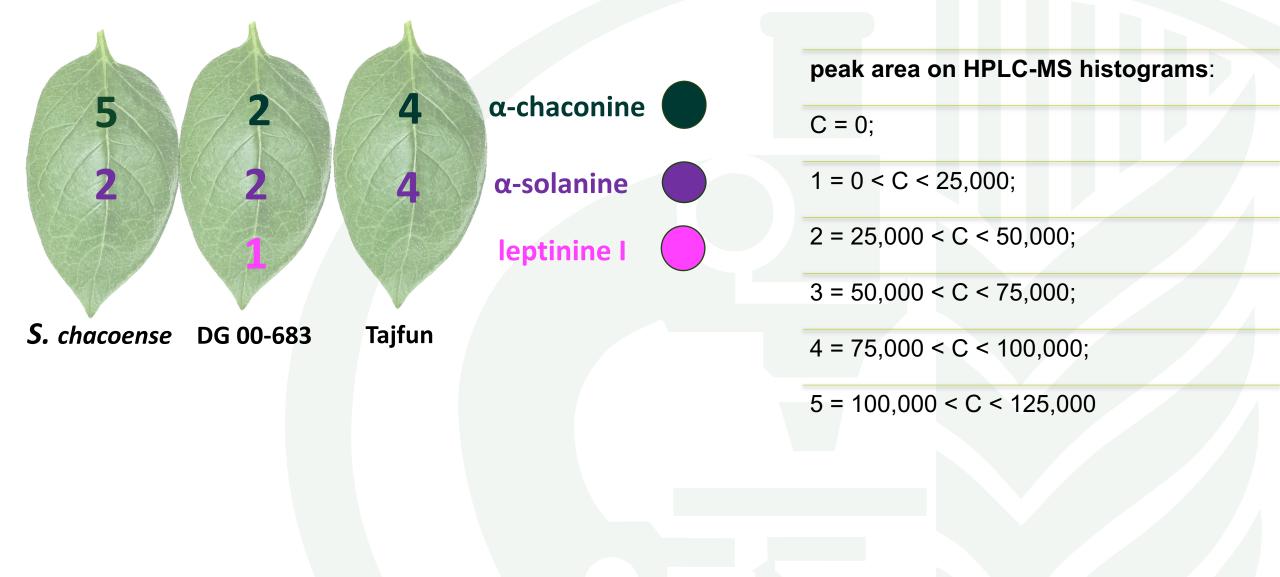
solasonine, solamargine, leptinine I, & leptine II.


Materials & Methods

GAs sources:

- ✓3 potato cultivars (Mieszko, Owacja, Tajfun)
- ✓ 3 wild species (S. chacoense, S.maglia, S. garsiae)
- ✓2 interspecific Solanum spp. hybrids (DG 00-683; DG 08-305)

Analytical technique: High-Performance Liquid Chromatography-Mass Spectrometry (**HPLC-MS**)


2. GAs & Biofilm Formation-Microtiter plate assay stained with Crystal Violet

3. GAs & QS Gene Expressionquantitative PCR

Selected GAs and their composition

Objective: To explore the potential of GAs, particularly from *Solanum* spp. leaves, as inhibitors against *Pectobacterium* and *Dickeya*.

Hypothesis: GAs can inhibit the growth, QS, enzymatic activity, and biofilm formation of these bacteria.

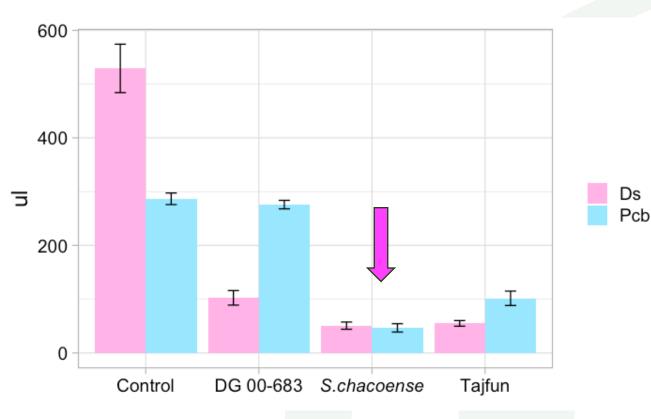
GAs impact on pectinolytic activity of bacterial isolates


Assay Medium: Crystal Violet Pectate (CVP) medium

GAs Supplementation: 0.8 mg/ml of CVP

Assessment: incubated at T 31°C for 48 h Inoculation: Suspension: 10⁹ CFU mL⁻¹ Method: toothpick

Replicates: 3 biological 4 technical



Measurement of cavity volumes formed by Ds in CVP medium with and without GAs.

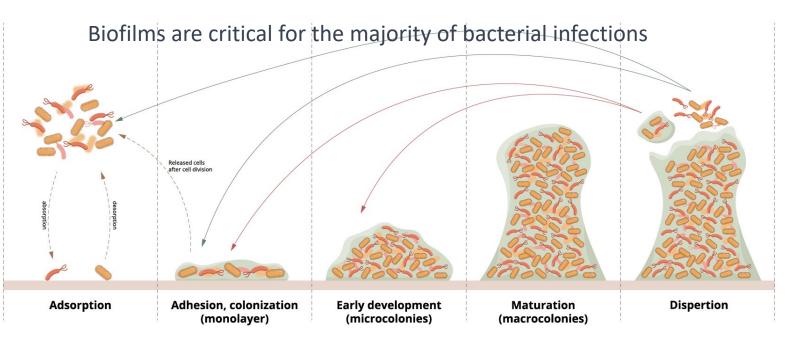
Control without GAs GAs from the cultivar Tajfun

Effect of GAs on pectinolytic activity of bacterial isolates

GAs, from S. chacoense, significantly inhibited the pectinolytic activity of both bacterial strains.

Ds showed similar responses to GAs from DG 00-683 and Tajfun, but both were weaker than the response to GAs from S. chacoense. Pcb exhibited no change in activity with GAs from DG 00-683 compared to the control.

Biofilm Formation


Structured community of microbial cells enclosed in a self-produced polymeric matrix adherent to a surface.

Components:

Microbial Cells: "Bacteria or microorganisms forming layers."

Extracellular Polymeric Substances (EPS):

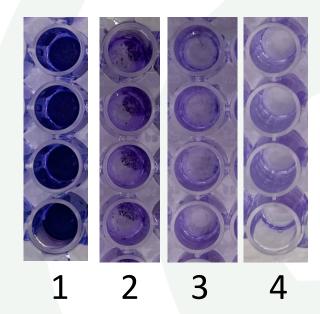
"Mixture of polysaccharides, proteins, nucleic acids, and lipids."

Biofilm lifecycle

Ma et al., 2022

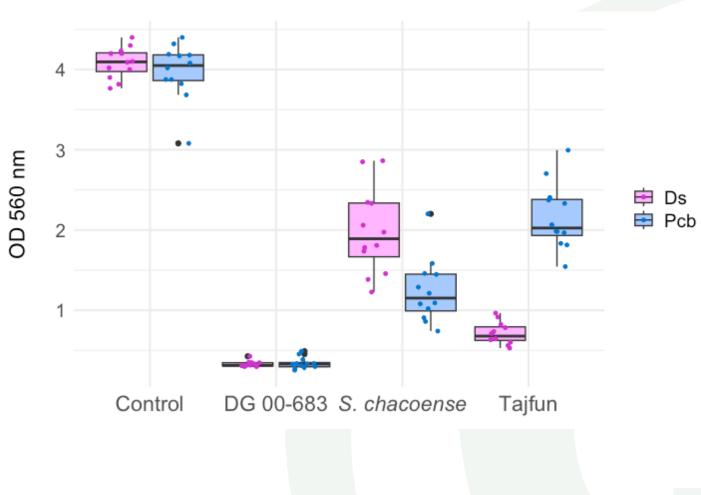
Our research focused on observing the **early stages of biofilm formation**. We specifically analyzed the biofilm after **6** hours of bacterial growth.

GAs role in bacterial biofilm formation


Biofilm Assessment Microtiter plate assay Stained with Crystal Violet

Incubation 6 h at 30°C Biofilm Quantification 560 nm OD

Replicates


3 biological4 technical

Control
Tajfun
S. chacoense DG 00-683

Biofilm formation inhibition by GAs in *Ds* and *Pcb*

DG 00-683 GAs: Most effective for both Ds and Pcb

S. chacoense GAs: Noticeable reduction, but less than DG 00-683

Tajfun GAs: Highly effective against Ds

Quorum Sensing in Dickeya & Pectobacterium: A Key player in plant pathogenicity

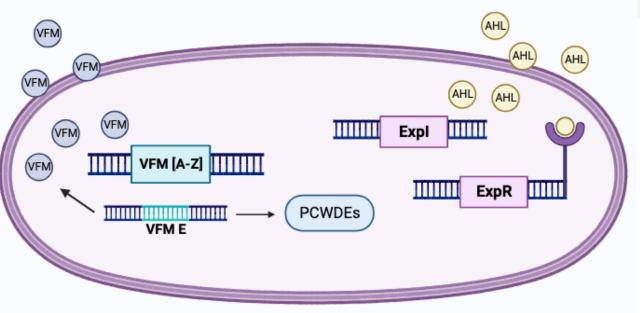
QS plays an important role in bacterial growth,

virulence, motility and biofilm formation.

It operates through auto-inducers (AIs), which give an idea of bacterial density.

These auto-inducers are chemical signals, such as acylhomoserine lactones (AHL).

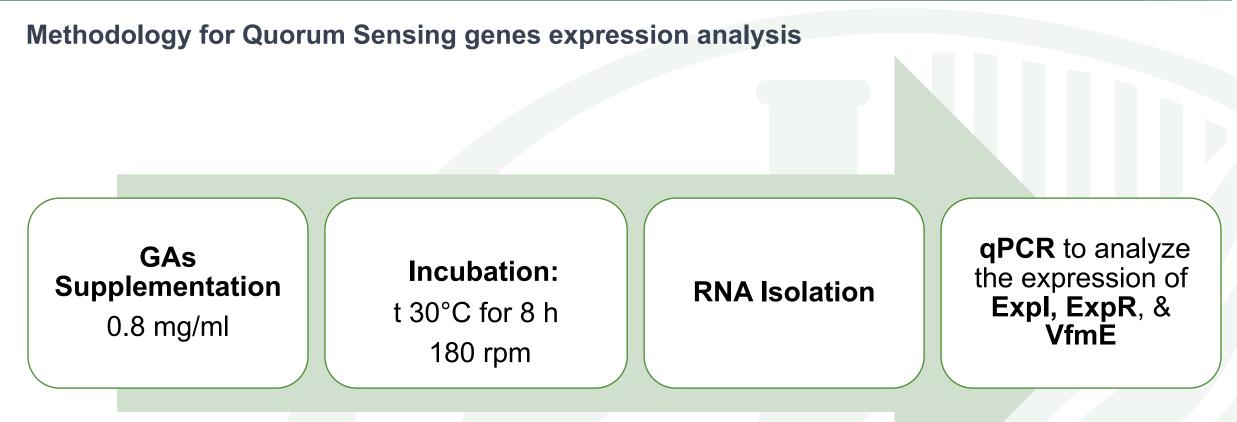
Ds


Uses two QS systems:

- AHL-based (synthase Expl and sensory protein ExpR)
- Vfm system which has 26 genes (VFM A-Z)

Notably, VFM E plays a crucial role in PCWDEs production.

Pcb


QS is focused on AHL production, detection, and response.

As bacteria grow, they produce AHLs via the enzyme Expl. When AHL levels are high, they bind to ExpR and activate QSrelated genes.

Created in BioRender.com bio

Relative gene expression of Expl, ExpR, and VfmE was calculated using 2-^{ΔΔCt} method.

Impact of GAs on QS gene expression in Dickeya solani

DG 00-683: highest expression of Expl & VfmE.

S. chacoense: strongly suppresses all genes. White cell (0.19) for VfmE indicates minimal expression.

Tajfun: moderate expression levels.

Key Findings:

- GAs, particularly from S. chacoense, significantly inhibited pectinolytic activity of Ds and Pcb.
- GAs from DG 00-683 most effectively inhibited biofilm formation in both Ds and Pcb.
- Varying impacts on QS gene expression: DG 00-683 highest for Expl & VfmE; S. chacoense suppressed all tested genes; Tajfun – at moderate levels.

Conclusion:

Glycoalkaloids show potential as natural inhibitors against key virulence factors of Ds and Pcb, suggesting a possible eco-friendly alternative for controlling potato bacterial diseases. Further studies are needed.

Thank you for your attention.

The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute

Radzików 05-870 Błonie, Poland tel. 22 733 45 00 NIP-PL: 5290007029 REGON: 000079480 e-mail: postbox@ihar.edu.pl www.ihar.edu.pl Anna Grupa-Urbańska

Platanowa 19 05-831 Młochów

e-mail: a.grupa@ihar.edu.pl

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Plant Breeding and Acclimatization Institute - National Research Institute Radzików, 05-870 Błonie, Poland

Increase of glycoalkaloid content in potato tubers by greening as a method to reduce the spread of *Pectobacterium* and *Dickeya* spp. in seed production systems

Dorota Sołtys-Kalina, Anna Grupa-Urbańska, Renata Lebecka, Maud Tallant, Isabelle Kellenberger, <u>Brice Dupuis</u>

04.09.2023

Context

- Diseases caused by *Dickeya* and *Pectobacterium* species are responsible for losses of about EURO 46 M annually for the potato sector of the European Union
- There are no commercial products available to control the spread of these bacteria in seed potato production systems either in the field or during storage

Hypothesis

The glycoalcaloids (GAs) naturally produced by the tuber after greening will allow the control of *Pectobacterium* and *Dickeya* in seed potatoes

How to proceed practically?

The seed potatoes are harvested in two steps:

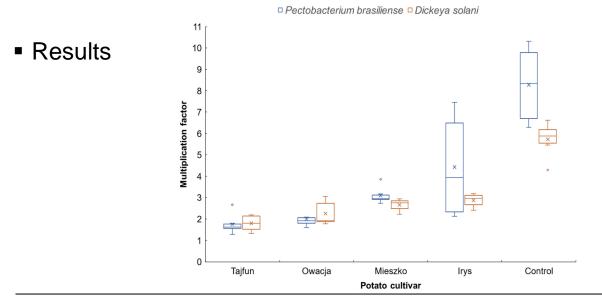
- The potato harvester digs up the potatoes and leaves them on the soil exposed to sunlight for about ten days. The seed tubers will become green and increase their glycoalkaloid content
- 2. The seed tubers are then harvested and stored at low temperature waiting to be planted the next season

Source: ABC rural

Harvest performed after greening Source: Standen

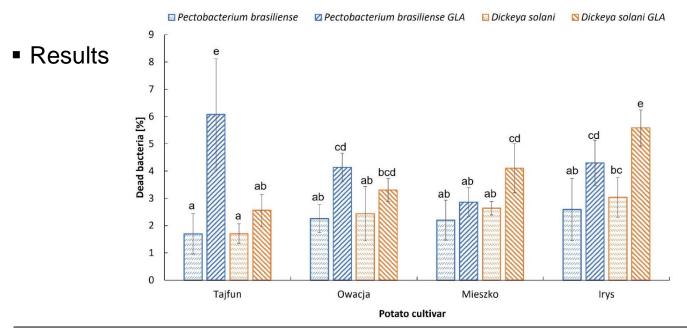
Greening for the control of *Pectobacterium* and *Dickeya* spp. control | EAPR Pathology 2023 Brice Dupuis et al.

Source: Gardening know how

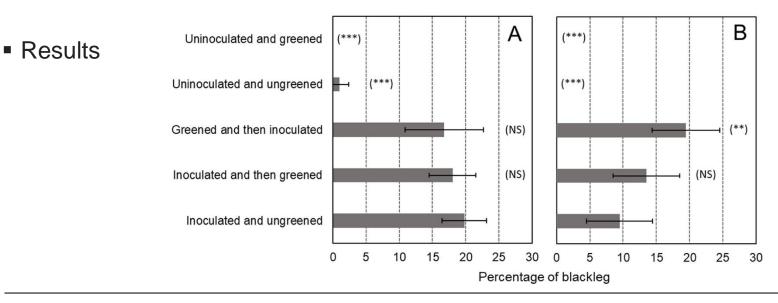

Source: Hardox

How did we verify our hypothesis

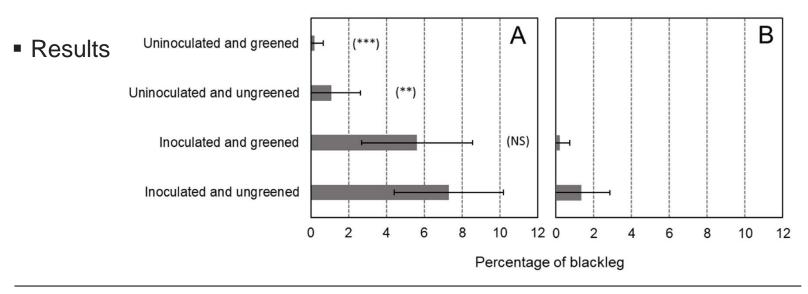
- 1. Effect of GAs on bacteria growth in vitro
- 2. Effect of GAs on bacteria viability in vitro
- 3. Effect of articifial greening in the field
- 4. Effect of natural greening in the field
- 5. Effect of greening on potato yield


Effect of GAs on bacteria growth in vitro

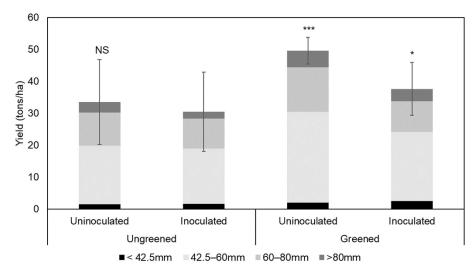
- Materials and methods
 - GAs were extracted from the leaves of four potato varieries (Tajfun, Mieszko, Irys, and Owacja)
 - Two bacterial strains (*Pectobacterium brasiliense* Pcb3M16 and *Dickeya solani* IFB0099) were grown in broth medium with the four different GAs extracts, and the OD was measured.


Effect of GAs on bacteria viability in vitro

- Materials and methods
 - GAs were extracted for the leaves of the same four potato varieries.
 - The same two bacterial strains were grown in broth medium with the four different GAs extracts, and the viability was measured with a CyFlow Space flow cytometer equipped with a blue laser.


Effect of artificial greening in the field

- Materials and Methods
 - Tubers of cv. Agria were exposed to artificial light for 10 days before and after inoculation with *D. dianthicola* 8823.
 - They were then planted in the field and the development of blackleg symptoms was assessed. This trial has been repeated two consecutive years.


Effect of natural greening in the field

- Materials and Methods
 - Tubers of cv. Agria were inoculated with *D. dianthicola* 8823 and planted in the field.
 - At havest, they were exposed to sunlight for 10 days.
 - The harvested tubers were planted the following year for blackleg assessment. This trial has been repeated two consecutive years.

Effect of greening on potato yield

- Materials and Methods
 - The yield was measures in both field trials
- Results
 - Articificial greening trials

■ Natural greening trials → no significant effect

Conclusions

Agroscope

- In the growth media: all GAs isolated from the four cultivars appeared to be bacteriostatic and bactericidal against both bacteria strains. The inhibitory effect varied among GAs from the different cultivars
- In the field: Except for a one-year field trial, the blackleg incidence was lower in plants grown from green seed tubers without the yield being affected. The blackleg control was marginal, probably due to the low production of GAs by the tubers of cv. Agria after greening

Perspectives

New field trials are currently performed with different varieties presenting different GAs content after greening (high and low content)

For more informations

Article

Increase of Glycoalkaloid Content in Potato Tubers by Greening as a Method to Reduce the Spread of *Pectobacterium* and *Dickeya* spp. in Seed Production Systems

Dorota Sołtys-Kalina ¹, Anna Grupa-Urbańska ¹, Renata Lebecka ¹, Maud Tallant ², Isabelle Kellenberger ³ and Brice Dupuis ^{2,*}

- ¹ Plant Breeding and Acclimatization Institute–National Research Institute, Platanowa 19, 05-831 Młochów, Poland
- ² Agroscope, Plant Production Systems, Route de Duillier 50, 1260 Nyon, Switzerland
- ³ Agroscope, Plant Protection, Route de Duillier 50, 1260 Nyon, Switzerland
- * Correspondence: brice.dupuis@agroscope.admin.ch

Thank you for your attention

Brice Dupuis brice.dupuis@agroscope.admin.ch

Agroscope good food, healthy environment

Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Plant Breeding and Acclimatization Institute - National Research Institute Radzików, 05-870 Błonie, Poland

Agroscope

RNAseq expression analysis of resistant and susceptible potato tubers at an early stage of infection with Dickeya solani

Lebecka R., Grupa-Urbańska A., Sołtys-Kalina D., Szajko K.

Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute, Radzików, E-mail: r.lebecka@ihar.edu.pl

Introduction

Soft rot of potato tubers is caused by pectinolytic bacteria of many different species, including *Dickeya solani*. It causes severe losses of potato yield. Chemical control is seldom used for this bacterial disease. The use of genetic resistance from wild potato relatives, found in the diploid clone DG 00-270, may be the genetic solution for improving of medium and low resistance levels to pectinolytic bacteria in cultivated potatoes. The mapping population (F1) was derived from the cross between two diploid potato clones, DG 00-270 (the resistant maternal parent, \mathfrak{P}) and DG 08-305 (the susceptible pollen parent, σ). We discovered two strong and reproducible QTLs for resistance to *D. solani* on potato chromosomes IV and II. The objective of this study was to identify genes related to the complex trait of potato tuber soft rot resistance, in the early stage of infection, 8 hours post-inoculation. This moment corresponds to the transition from the early latent phase of infection to the symptomatic phase.

Materials

Tubers of the five most resistant and five most susceptible to soft rot diploid individuals from the F1 population (Fig. 1.).

Methods

Potato tubers wound-inoculated with bacteria, mock-inoculated and not wounded were sprayed with water and kept in closed boxes at a temperature 27 °C. Tubers were cut after 8 h and tissue was cut out along the wound and immediately frozen in liquid nitrogen. RNA was isolated from three tubers per genotype, resulting in six bulked samples (Fig.2.), prepared in three replicates.

Sequencing was performed on Illumina NovaSeq6000 sequencing platform. Reads were mapped to the reference genome *Solanum tuberosum* DM 1-3 516 R44 (NCBI RefSeq GCA_000226075.1). Differential gene

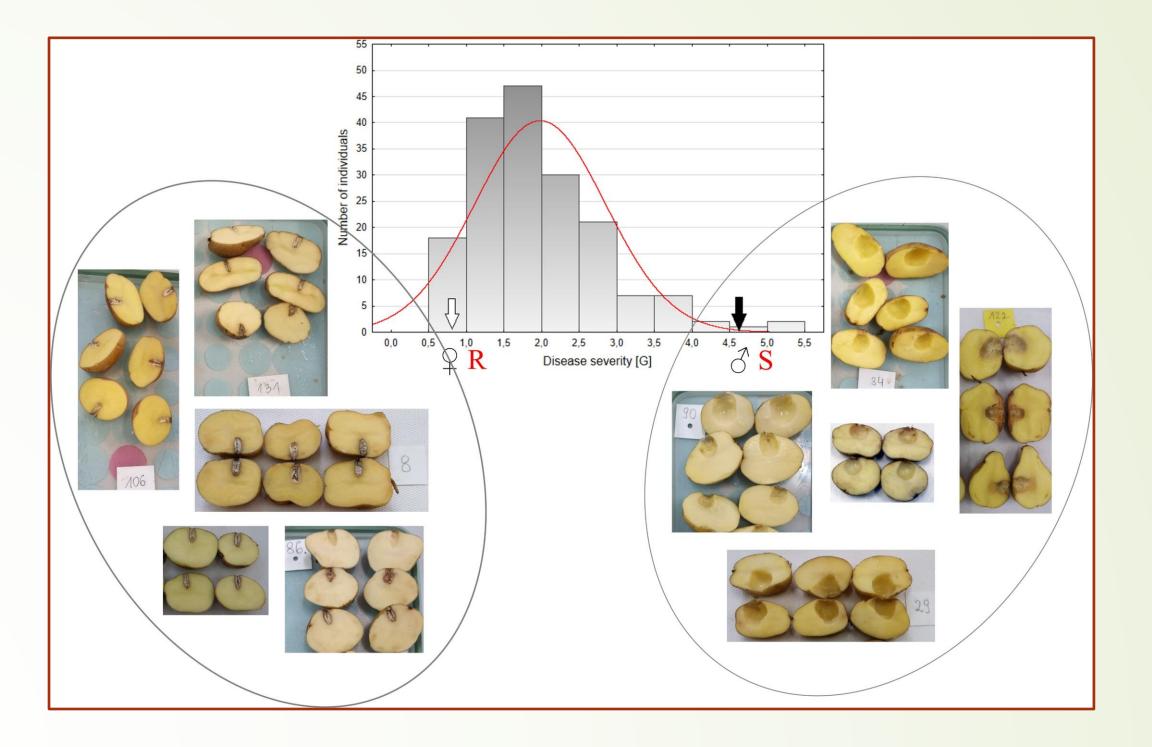


Fig. 1. Symptoms of infection three days post inoculation with *D. solani* in selected individuals from the mapping population.

expression analysis was performed with DESeq2 (Love et. al. 2014).

Results

Differences among treatments explained 77 % of the variance, between resistance level – 15% (Fig. 3.).

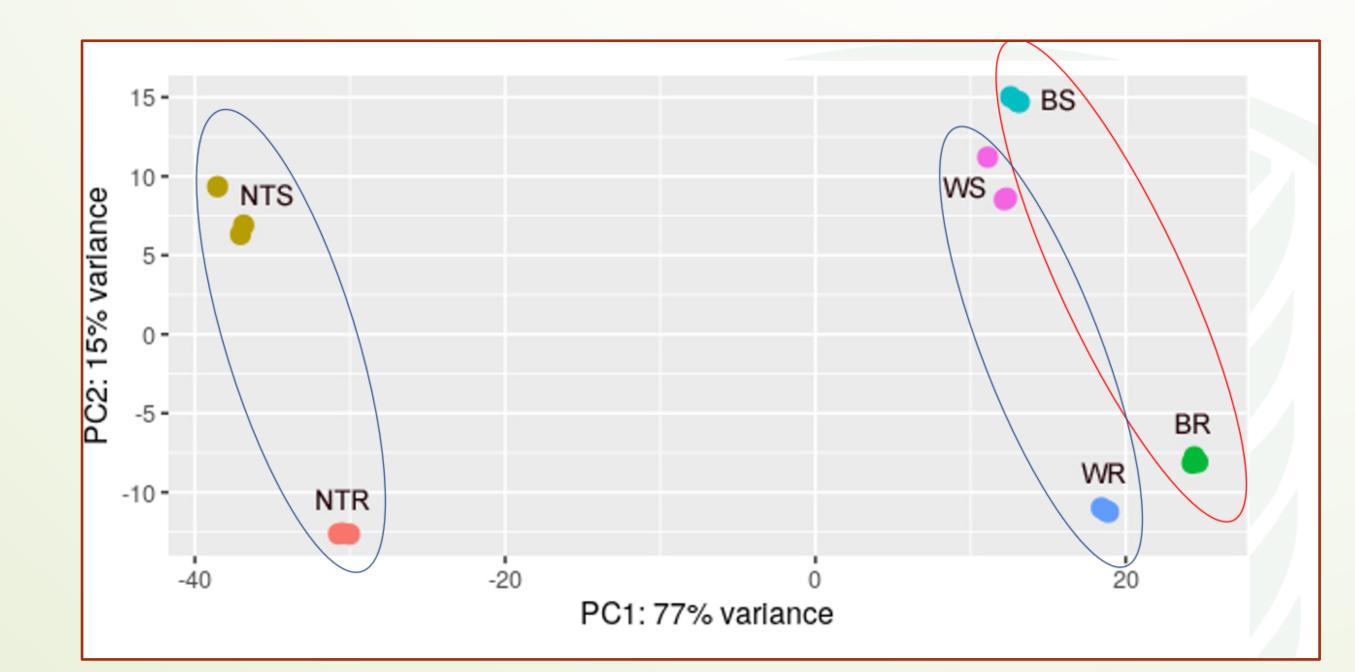
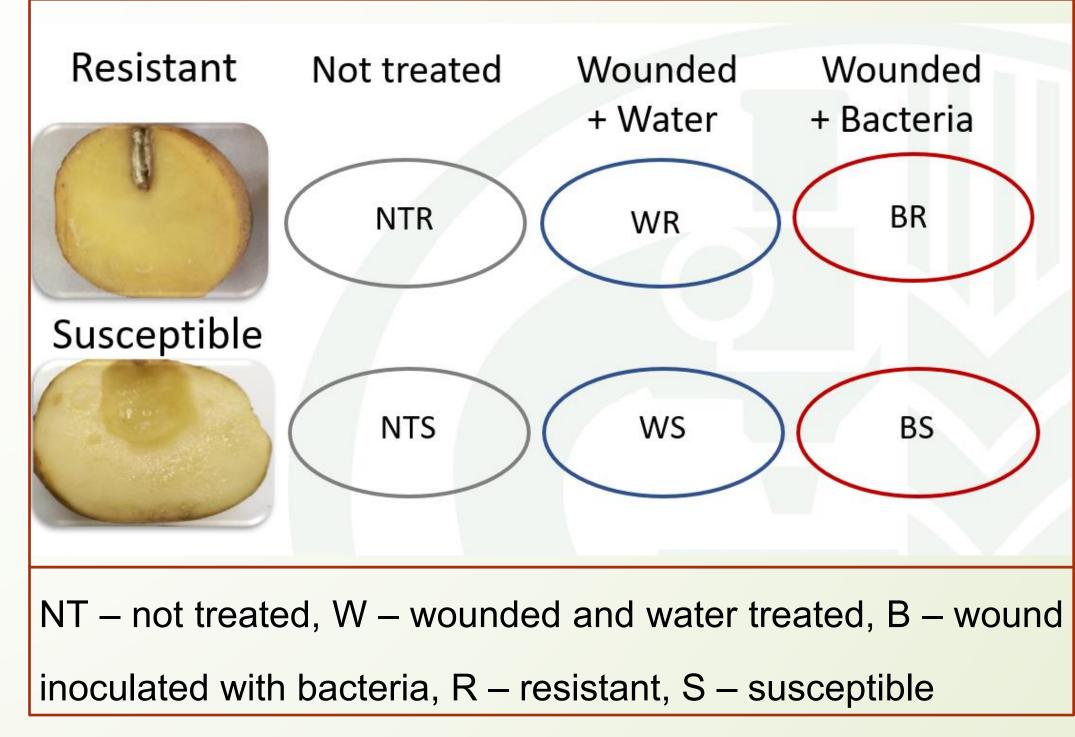
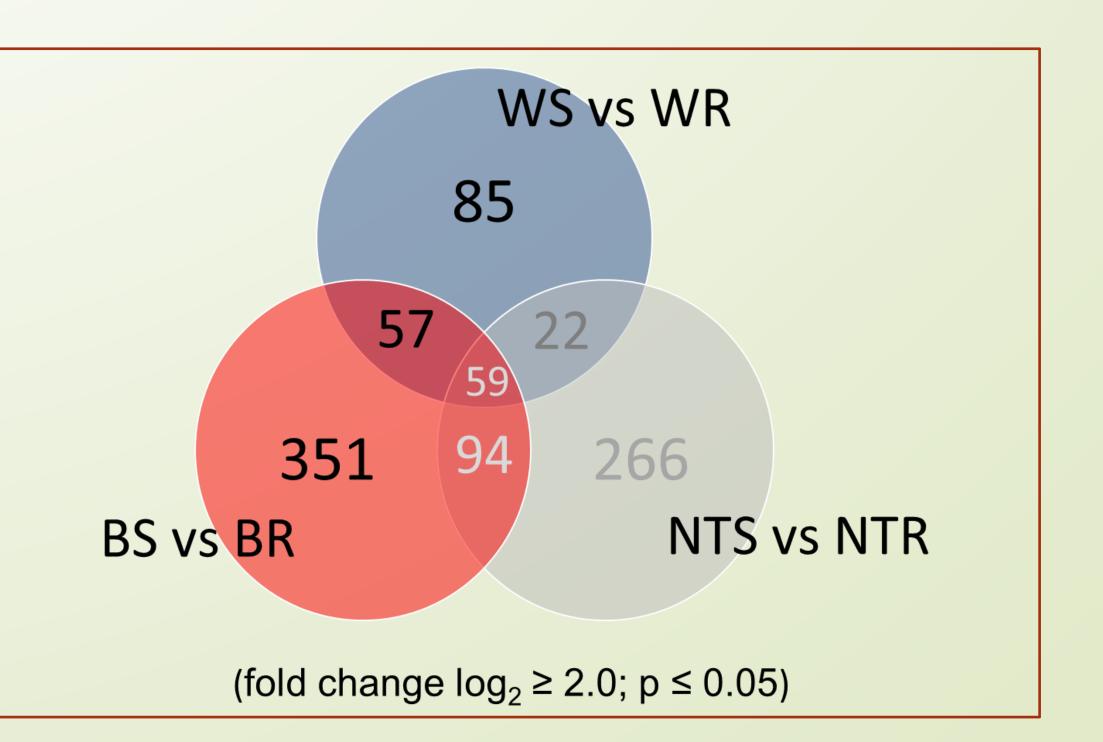




Fig. 3. Principal Component Analysis of sequenced samples.

Fig. 2. Experiment layout.

Out of 408 significantly differentially expressed genes in BS vs BR samples (351 genes only in BR and 57 genes in both BR and WR bulks, shown in Fig. 4), twenty-five were selected that were associated with: stress response, resistance to bacteria, pathogenesis, resistance genes, defense mechanisms, pathogen recognition, wound healing, suberization (peroxidases, 5 of which were found only in BR samples, feruloyl Co-A, and cytochrome P450). The expression of selected genes will be further evaluated by qPCR in individual samples of RNA from resistant and susceptible individuals.

Fig. 4. The number of significantly differentially expressed genes in the bulk of RNA from "resistant" individuals in comparison with the "susceptible" one.

Project financed by the Ministry of Agriculture and Rural Development, Poland, as part of basic research for biological progress in plant production (#28) in 2021-2027.

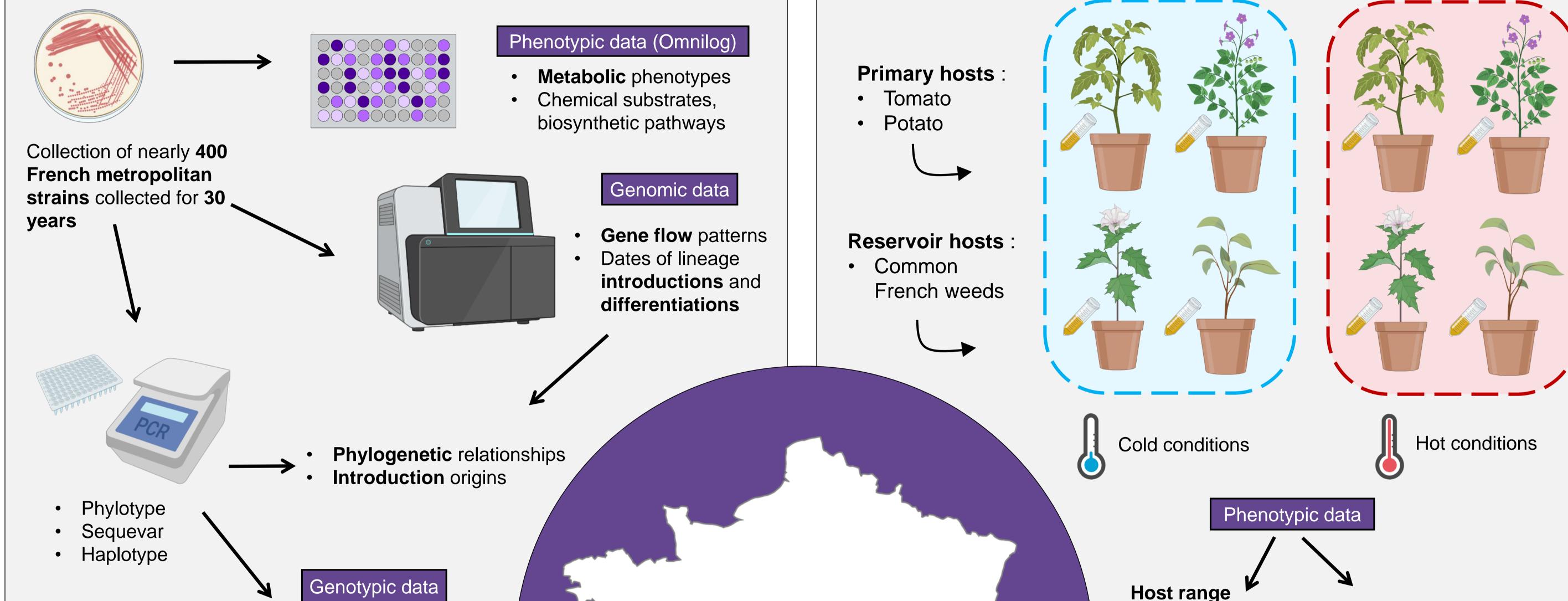
Evaluation of the phenotypic and genotypic diversity of Ralstonia solanacearum in metropolitan France and the risks for emergence of other species of the Ralstonia spp. complex

Antinéa Sallen^{1,2}, Aurélie Leclerc², Sandrine Paillard¹, Philippe Reignault¹, Amandine Cunty^{1*} and Anne-Claire Le Roux^{2*} ¹Plant Health Laboratory, ANSES, Angers, France ; ²FN3PT/inov3PT, INRAE-IGEPP, Le Rheu, France. *These authors contributed equally to this work. antinea.sallen@anses.fr or antinea.sallen@inov3pt.fr

• The Ralstonia solanacearum species complex (RSSC) includes distinct species (R. solanacearum, R. pseudosolanacearum and 3 ssp. of *R. syzygii*) and is considered one of the most damaging plant pathogens worldwide; as such, the European Union considers the whole complex as quarantine organisms. Background

• Recent findings of *R. pseudosolanacearum* in Europe are of great concern, and highlight strong survival and adaptation capabilities

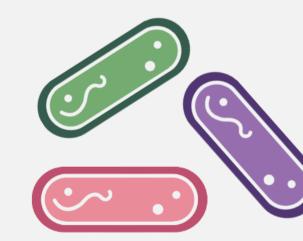
• There is a genuine risk for emergence of other species of the RSSC in **France**, especially in the context of climate change



- Determining the **phenotypic** and genotypic diversity of the French metropolitan RSSC strains
- Assessing the risk for **emergence** and establishment of RSSC strains (other than IIB-1) in **Europe**

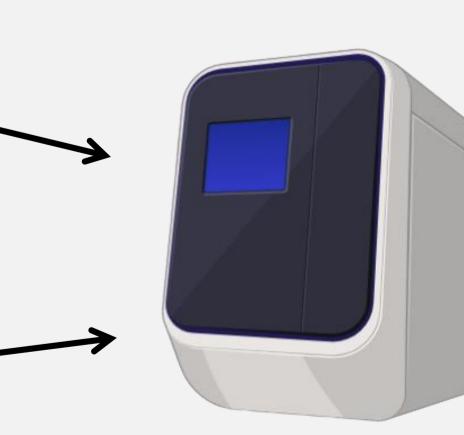
Epidemiological approach

Host range and pathogenicity

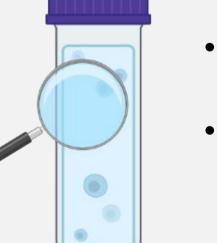

Design of a **phylotype IIB-1 specific** MLVA scheme Link between **phylogenetic** and **phenotypic** traits • Hypothetical **outbreaks** origins

Host range

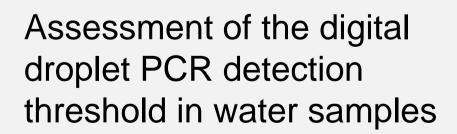
- Number of diseased plants
- **Symptom** severity
- Disease development
- Detection of latent infections
- Adaptation to climate change

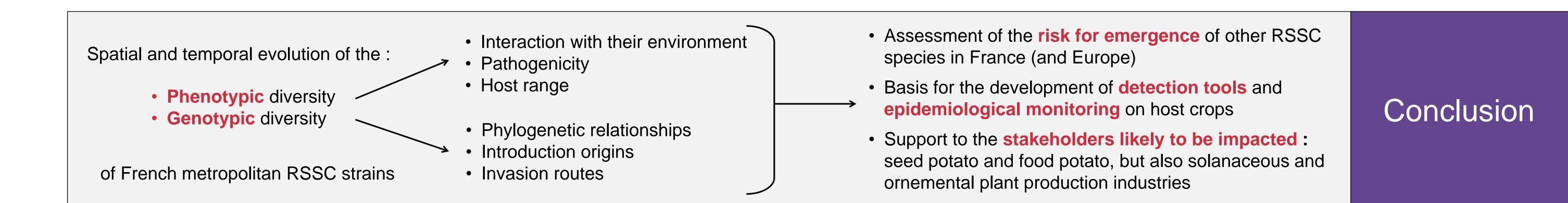

Detection and identification tools 3

Need for a real-time PCR sensitive and specific enough for detection of **all species** of the RSSC



A range of bacteria are pathogenic to potato, including *Clavibacter* sepedonicus




Development of 2 real-time PCR

- Detection of **all RSSC** species
- Detection of **distinct** potato pathogenic bacteria

- Difficulties detecting *R*. solanacearum in water samples
- Viable but non-cultivable (VBNC)/starved forms

EAPR Pathology and Pests Section Meeting, 3-6 September 2023, Arras (France)

Is there any risk for potato crops to be infected by **Apiaceae haplotypes of 'Candidatus Liberibacter** solanacearum'?

BERTON L.¹, NEVEUX M-S.¹, HUCHET E.¹, MOREE C.³, ZEAITER H.³, LATY P.³, LE HINGRAT Y.¹, GOBERT V.², LE ROUX A-C.¹

INTRODUCTION

Candidatus Liberibacter solanacearum (Lso) is a phloem-limited bacterium transmitted by psyllids to Solanaceous and Apiaceous plants. Haplotypes A and B of Lso are spread by *Bactericera cockerelli* and cause Zebra Chip disease of potato, mainly in the Americas and New-Zealand. These haplotypes and their vector have not been reported in Europe. The recent detection in Europe of Lso haplotypes C, D and E on Apiaceae crops led the potato industry to wonder about the risk of transmission of Apiaceae haplotypes to potato by their vectors *Bactericera trigonica* or *Trioza apicalis*. The objectives of this study are i) to estimate the occurrence of the disease and its vectors in potato fields and the close environment and ii) to assess the ability of psyllids to infect potato plants in a place where the Apiaceae haplotypes of Lso occured.

CROP'S MONITORING Material & Methods

- Plant were collected in potato fields close to Apiaceae fields (< 1 km) during 6 summers (2016 - 2021)
- Sampling per plot:
 - 5 potato plants
 - 5 Apiaceae plants (carrot, celery, parsley)
 - 3 to 5 weeds (majority black nightshade *Solanum nigrum*)
 - 4 potato volunteers
- Psyllids were collected (yellow traps) twice a week in some locations
- Analyses were carried out as described below (figure 1)

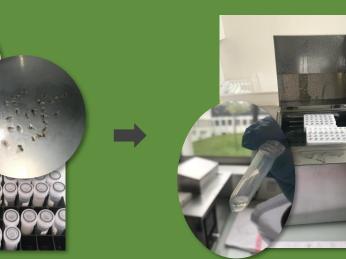
Figure 1: Plant (a) and insect (b) analysis methods

TRANSMISSION ASSESSMENT Experimental set-up

Figure 3: Plot plan

	Potato										crop Yellow trap									
	Plot 1:10 to 20 tubers / variety / row									Plot 2 : 10 to 20 tubers / variety / row										
A row B row C row	BINTJE	CARA	CHARLOTTE	DESIREE	KENNEBEC	MONALISA	NICOLA	RED PONTIAC	SHEPODY	SPUNTA	BINTJE	CARA	CHARLOTTE	DESIREE	KENNEBEC	MONALISA	NICOLA	RED PONTIAC	SHEPODY	SPUNTA
Carott seed crop																				

- 3 years of experiments (2017 2019)
- 10 potato cultivars were tested
- Plants were sampled 3 times during the growing period:
- 9 potato plants per cultivar and plot
- 5 carrot plants
- Analyses were carried out as described previously (figure 1)

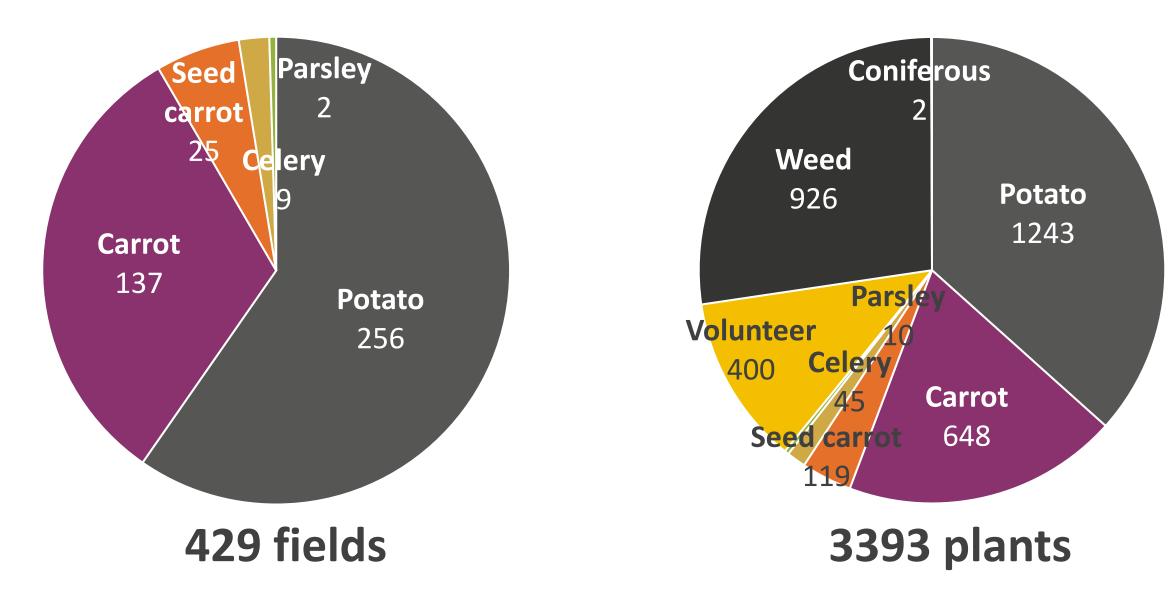


1g of plant tissue

in PBS buffer

RT-PCR (Li *et al.*, 2009)

DNA extractions:



TNES protocol

DNA amplification: RT-PCR (Li *et al.*, 2009)

Results

Figure 2: Number of fields and plants sampled and analysed

Lso was not detected in any of the 508 potato plants analysed ✓ Lso was detected in 70% of the 40 seed carrot plants tested ✓ Lso was detected in 79% of the 1195 psyllids analysed

Figure 4: Number of psyllids collected in each crop

			Plo	ot 2	2017	2019				
			Collected no		49	302				
			Analy	sed no	49	187				
			Posit	ive %	67%	82%		Carrot	2017	2019
							Co	ollected no	1649	1742
Potato	2017	201	9				Α	nalysed no	219	259
Collected no			What is here				F	Positive %	73%	86%
Analysed no	57	207	7							
Positive %	84%	77%	%				-			
Par Bar	23			Plo	ot 1	2017	201	.9		
				Collec	ted no	58	23	3		
				Analy	sed no	58	15	9		
A A A A		-	Nº 1	Posit	ive %	62%	829	%	A	

- Lso was not detected in any of the potato plants analysed
- ✓ Lso was detected into 49% of the seed carrot plants tested
- ✓ Lso was detected into 1 nettle *Urtica dioica* (0,1% of the weed analysed)
- ✓ Lso was detected into 18% of the 112 psyllids analyzed

CONCLUSIONS

- ✓ These results suggest that Lso transmission to potato plants by Apiaceae psyllids is unlikely
- ✓ The highest danger for the potato industry in Europe is the risk of introduction of *B. cockerelli* and Lso haplotypes A and B through trade exchanges

¹ FN3PT/inov3PT (Fédération Nationale des Producteurs de Plants de Pomme de Terre), INRAE, Le Rheu, France; ² FN3PT/inov3PT, Achicourt, France; ³ Comité Centre et Sud, Laurière, France

Purple top complex disease a threat for the Ecuadorian and South America potato production and diversity Cuesta X¹, Racines M¹, Rivadeneira J¹, Castillo C¹

Introduction

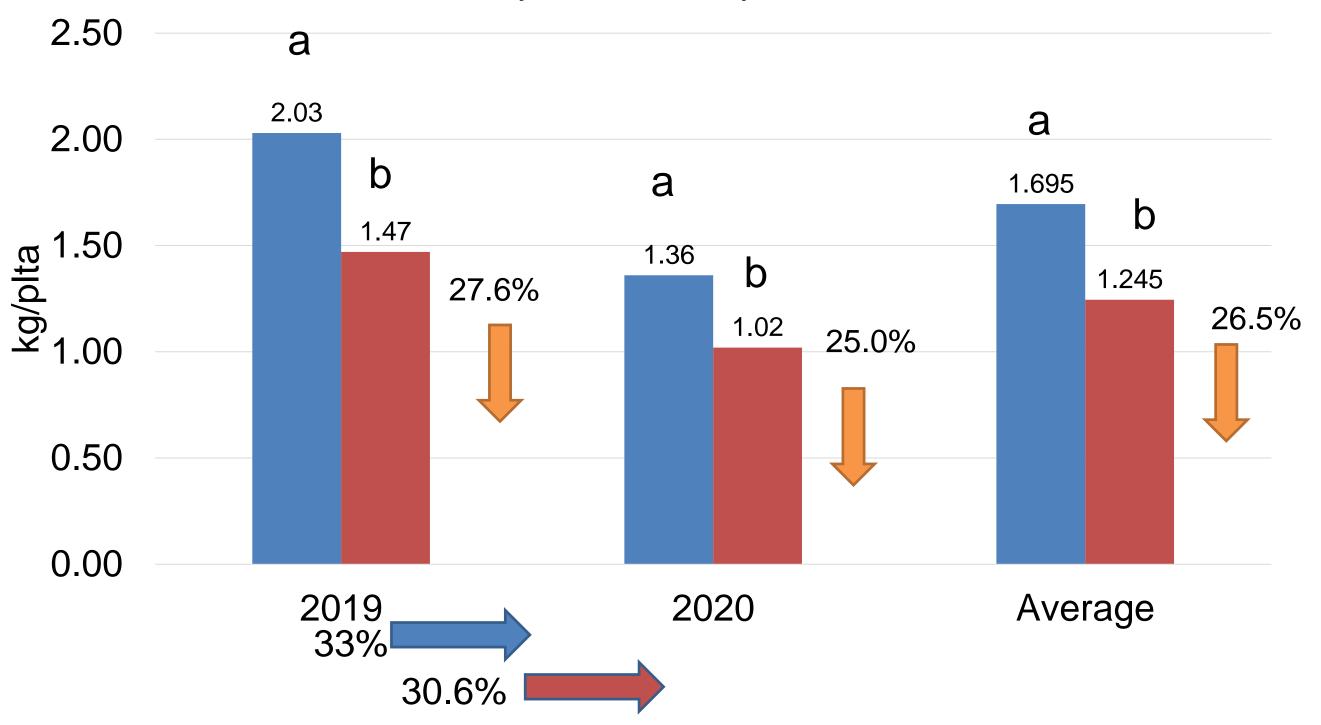
Potato purple top complex (PPT) caused by *Candidatus* Phytoplasma spp. and *Candidatus* Liberibacter solanacearum (CaLso) is an emerging disease in Ecuador, which has caused significant crop losses, the disease is reported in other solanaceous crops such as tomato, eggplant, and $pepper^{[1]}$. Management is based on the periodic application of insecticides for vector control Bactericera cockerelli (Bc), PPT has become one of the main constraints. Large diversity of potato is found in South America, it is estimated in about 100 wild species, >5000 native potatoes, that could be in danger. The objective of this research was to reduce the negative effects of the disease through the development of an integrated disease management strategy.

Results

Diagnosis

In Ecuador, phytoplasmas were identified in 2018, Bc in 2019^[2] and CaLso in 2020 ^[3], as a result, up to 100% potato yield losses were reported whilst the cultivated area was reduced by 56%. Colombia reported Bc at the beginning of 2021, while Peru at the end of 2021, no reports of CaLso.

Transmission


The symptoms of PPT and its negative effects were transmitted through the seed tuber (Figure 1).

Breeding

The species S. albicans, S. galapagense, S. colombianum and S. and reanum showed antibiosis and antixenosis resistance response to Bc. Early potato varieties showed less incidence of PPT.

Biorrational products

Neem extract, potassium soap and kaolin had positive effect to reduce Bc population.

No symtoms

Molecular analysis

Plant breeding

Seed transmission

IDM

- Chemical control
- Biorrational products
- Cultural practices

Figure 1. Effect of PPT symptoms on yield in two crop cycles

With the support of **PATAFEST** project a multi-actor consortium composed by 18 partners whose objective is to protect potato against emerging new pests, INIAP plans in the next four years to characterize wild, native, improved Ecuadorian varieties and European cultivars for Bc and CaLso resistance to identify at least 30 CaLso resistant varieties, a digital tool for diagnostic detection of CaLso and a pesticide free natural solution to control Bc will be validated under Ecuadorian conditions.

Conclusions

- Biodiversity of potato and other solanaceuos crops from South America could be at risk.
- IDM strategy based on monitoring, high quality seed, natural products, early potato varieties, cultural practices, biorrational products and chemical control is the recommended technology to prevent PPT disease. High-quality seed production programs are essential.

- Early varieties

Training/diffusion

References

[1] Mora, V., et al. 2021. Frontiers in Microbiol. 12: 700663. [2] Carrillo, C. *et al.*, 2019. Bull. Insectol, 72, 85-91. [3] Caicedo, J. et al., 2020. Australasian Plant Disease Notes, 15, 1-3.

- Breeding for resistance/tolerance to PPT is necessary.
- PATAFEST will contribute to the development of IDM technology to reduce the negative effects of CaLso

Acknowledgements

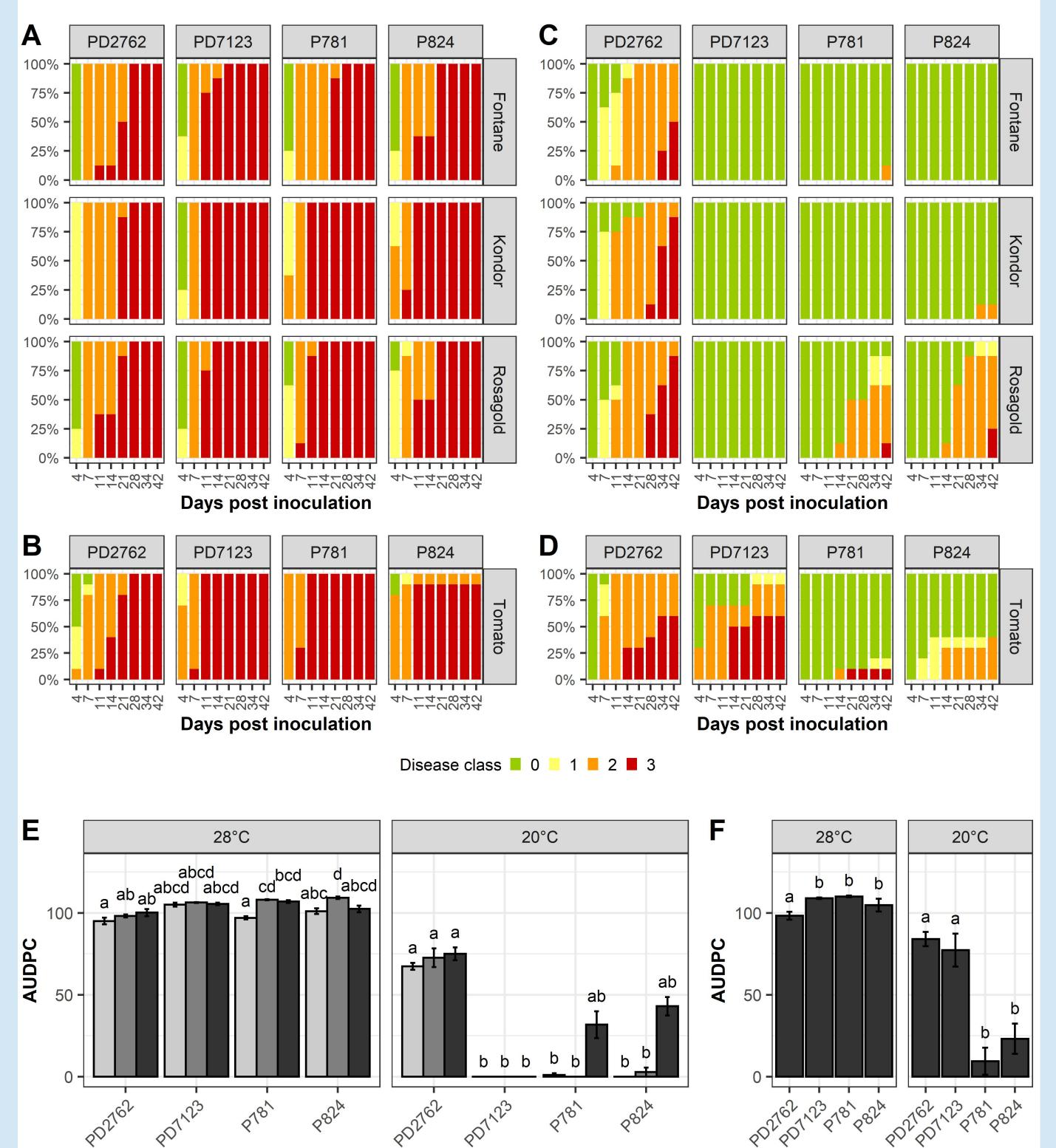
INIAP-FIASA project PATAFEST funded by the European Union via the EU Horizon Europe programme (project number 101084284)

¹National Agricultural Research Institute (INIAP) Quito, Ecuador Contact: <u>xavier.cuesta@iniap.gob.ec</u> www.iniap.gob.ec

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

Virulence of novel *Ralstonia pseudosolanacearum* (phylotype I) strains from rose, blueberry and mandevilla on seed potato

<u>B.J.A. van Doorn</u>¹, P.R. Overeem¹, M.J.C. Pel¹, N.N.A. Tjou-Tam-Sin¹, J.L.J. van de Bilt¹, P.P.M.A. Gorkink-Smits¹, N.M. Landman¹, A.M. Bocsanczy², D.J. Norman² and M. Bergsma¹. ¹Bacteriology, Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization of the Netherlands (NPPO-NL), Wageningen, the Netherlands. ²University of Florida Department of Plant Pathology and Mid-Florida Research and Education Center-Apopka, USA


Netherlands Food and Consumer Product Safety Authority Ministry of Agriculture, Nature and Food Quality

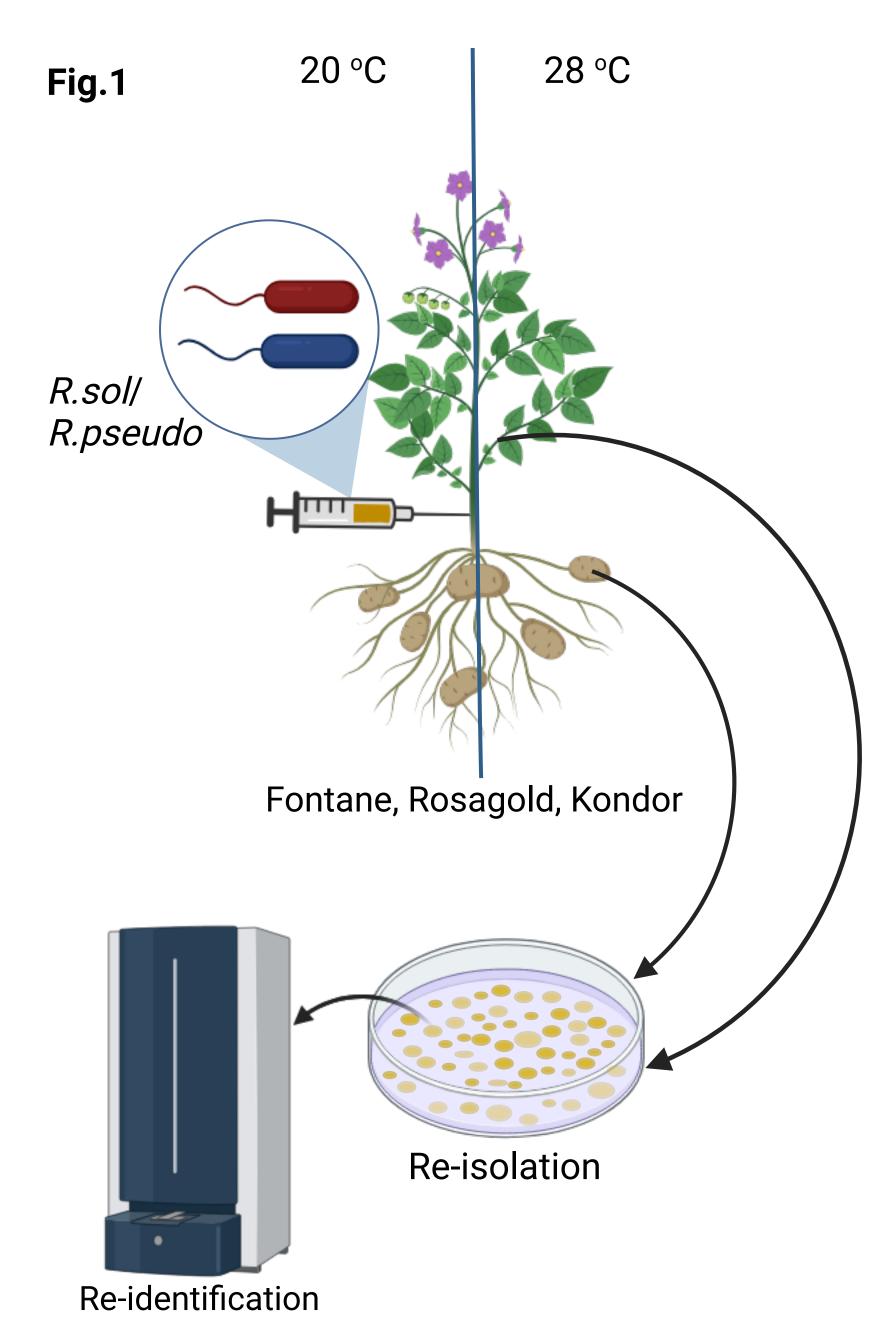
INTRODUCTION

Ralstonia solanacearum (*R. sol*; phylotype (phy) IIB), the causal agent of brown rot disease on potato, causes great economical losses by affecting potato in temperate regions. It is thought that members of *Ralstonia pseudosolanacearum* (*R. pseudo*; phy I) are not pathogenic at low temperatures and usually are found in warmer climates. *R. pseudo* strain PD 7123 isolated from rose in the Netherlands, strain P824 isolated from blueberry in the USA and strain P781 from mandevilla in Florida are phylogenetically closely related and could therefore share a common host. The virulence and ability of these novel strains to multiply latently in potato in temperate regions is unknown.

RESULTS

Fig. 2 Disease class distribution per point, representing disease time progress and comparison of the Area Under the Disease Progress (AUDPC) per Curve treatment combination. A) Disease progress of three potato varieties at 28°C (n=8). **B)** Disease progress for tomato at 28°C (n=10). C) Disease progress of three potato varieties at 20°C (n=8). **D)** Disease progress for tomato at 20°C (n=10). AUDPC per temperature treatment for each isolate and potato combination (E) and tomato (F). Error bars indicate standard error. Letters above the indicate significant the bars differences (p<0.05).

Objective:

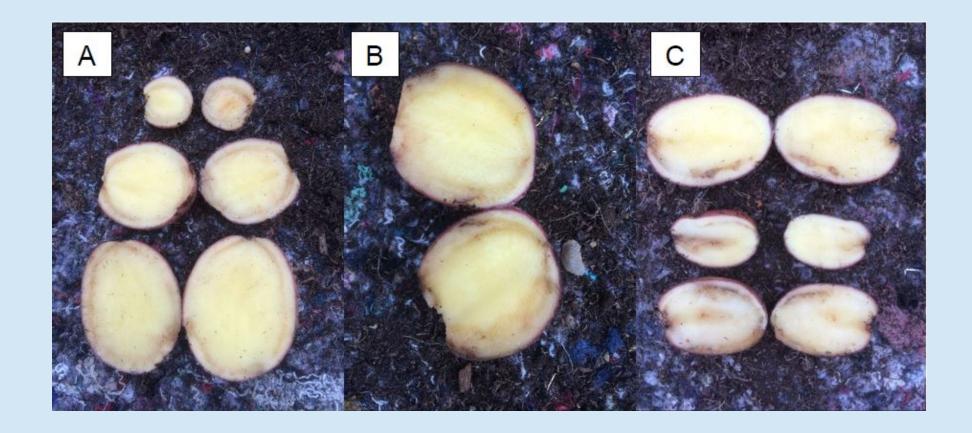

 Assess the virulence and presence of latent infections of the mentioned *R. pseudo* strains on three commercial seed potato cultivars (Fontane, Kondor, Rosagold) under warm (28°C) and temperate (20°C) temperatures.

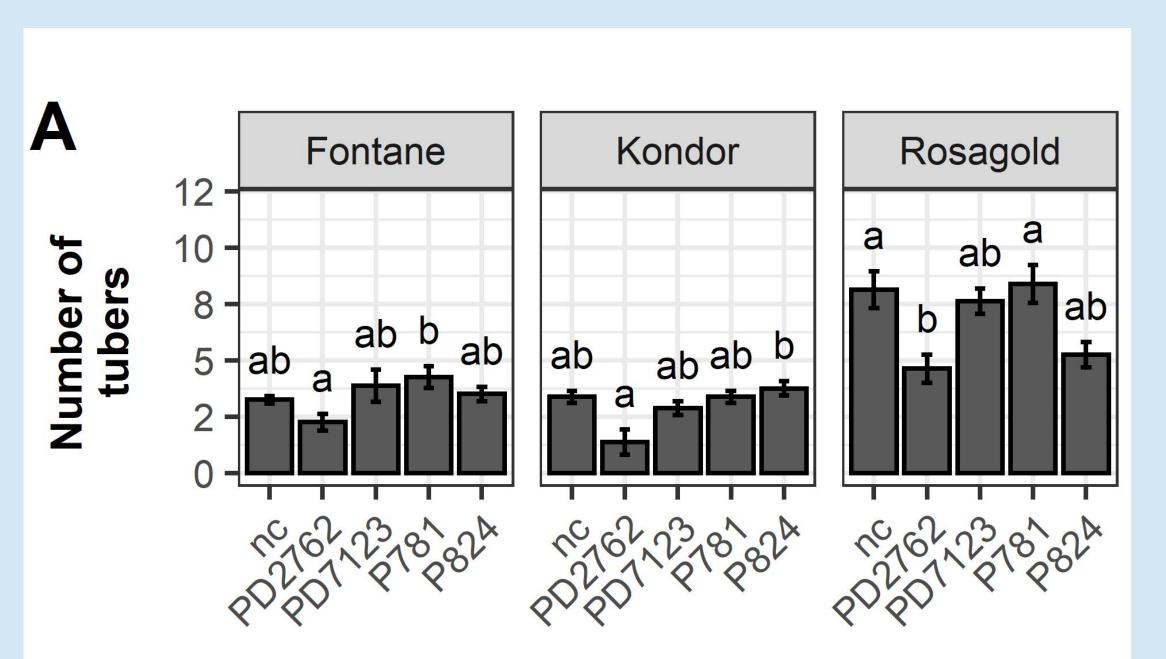
METHODS

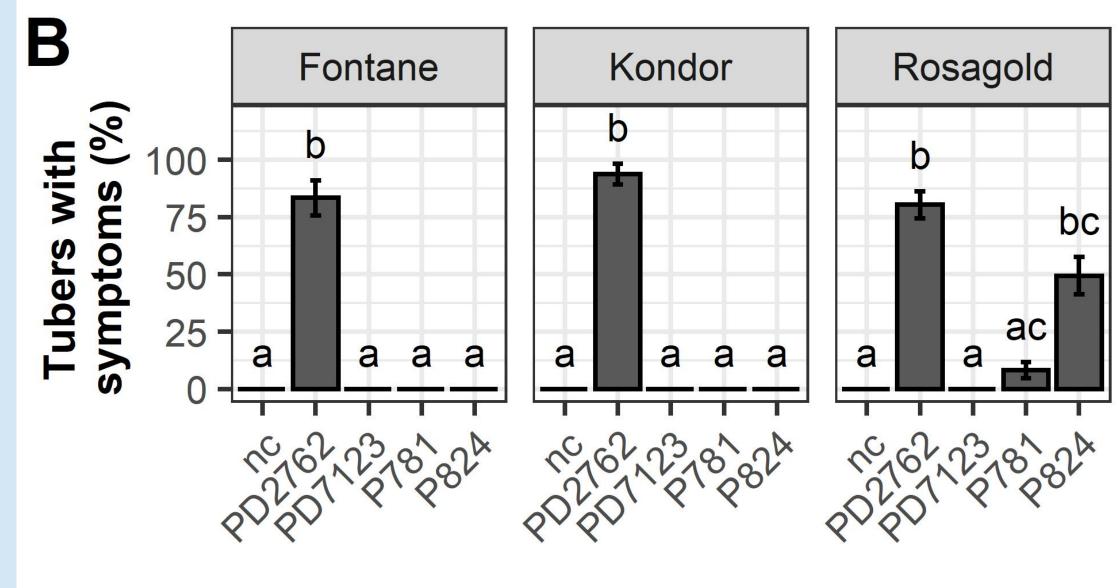
- Inoculation of cultivars Fontane, Rosagold and Kondor with the three *R. pseudo* isolates and the positive control *R. sol* (PD2762)
- Incubation at 20 or 28 °C at 80% RH
- Score symptom development during 5 weeks
- Re-isolation from plants on mSMSA medium
- Harvesting the daughter tubers to evaluate symptom development and to confirm the (latent) presence of *R. pseudo*
- MALDÍ-TOF MS to confirm the identity of reisolated bacteria

Virulence on potato

- Differences in wilt symptom severity in potato cultivars and between strains
- At 28°C *R. pseudo* strains are more aggressive on tomato and potato than *R. sol*
- Wilt symptoms present in all plants 42 dpi at 28°C
- Disease severity much lower for *R. pseudo* than *R. sol* at 20°C, with less symptoms
- For R. pseudo, most potato plants do not develop symptoms at 20 °C
- Nearly all symptomatic and

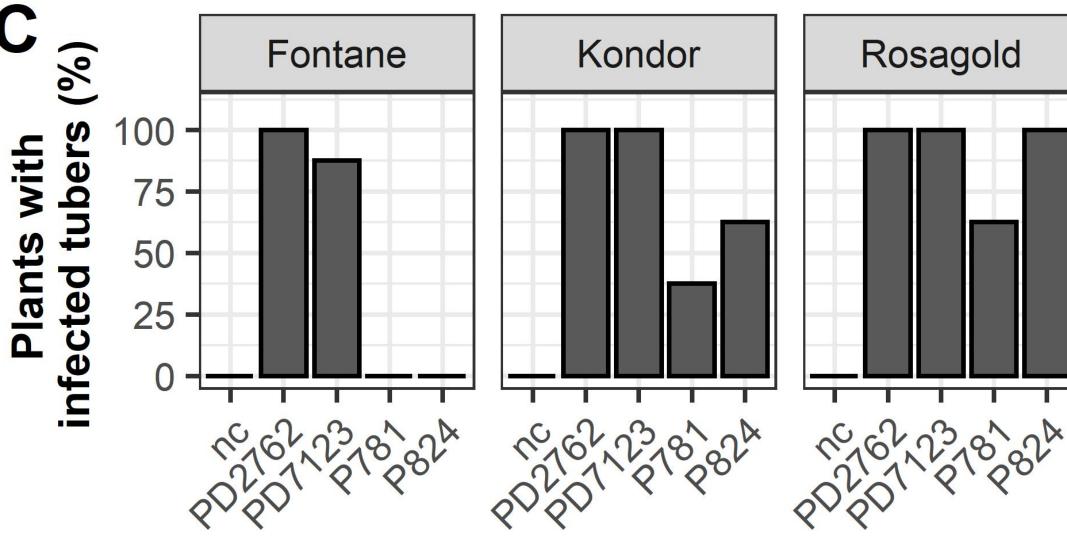

asymptomatic plants positive for *R. sol./R. pseudo*


🔲 Fontane 🔲 Kondor 📕 Rosagold


Fig. 3 Indicators of yield and latent infections in potato tubers at 20°C. **A)** Number of tubers per plant recovered. **B)** Percentage of tubers with symptoms. **C)** Percentage of plants from which at least one tuber was infected with *Ralstonia*. Error bars indicate the standard error. Letters above the bars indicate significant differences (p<0.05).

Systemic infections in the daughter tubers

- 42 dpi at 28°C none of the inoculated plants had tubers
- Most of the inoculated plants at 20°C did have daughter tubers 42 dpi
- *R. sol* caused at least 80% symptomatic tubers, irrespective of the cultivar
- *R. pseudo* strains did not cause any symptoms in Fontane and Kondor
- 0-49% symtoms on Rosagold, depending on the strain
- Succesful infection strongly depends on strain and cultivar interaction



with MALDI-TOF MS

CONCLUSION

- Differences in symptom development in distinctive potato cultivars inoculated with various *R. pseudo* strains demonstrate the specific interactions between strains and host under warm and temperate climatic conditions
- *R. pseudo* poses a serious threat to potato cultivation, due to its ability to latently infect daughter tubers under temperate conditions

Fig. 4 Typical brown rot symptoms developed on daughter tubers of cv. Rosagold at 20°C, 42 dpi after inoculation with **(A)** phy IIB strain PD2762, **B)** phy I strain P781, **C)** phy I strain P824.

Contact

- Bo van Doorn
- <u>b.j.a.vandoorn@nvwa.nl</u>

This study was financially supported by research grant OS 2016339 project for *R. sol* species complex of the Ministry of Economic Affairs in the Netherlands

